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Introduction 
.NET Core and ASP.NET Core offer several advantages over traditional .NET development. You should 

use .NET Core for your server applications if some or all of the following are important to your 

application’s success: 

 Cross-platform support 

 Use of microservices 

 Use of Docker containers 

 High performance and scalability requirements 

 Side-by-side versioning of .NET versions by application on the same server 

Traditional .NET applications can and do support these requirements, but ASP.NET Core and .NET 

Core have been optimized to offer improved support for the above scenarios. 

More and more organizations are choosing to host their web applications in the cloud using services 

like Microsoft Azure. You should consider hosting your application in the cloud if the following are 

important to your application or organization: 

 Reduced investment in data center costs (hardware, software, space, utilities, etc) 

 Flexible pricing (pay based on usage, not for idle capacity) 

 Extreme reliability 

 Improved app mobility; easily change where and how your app is deployed 

 Flexible capacity; scale up or down based on actual needs 

Building web applications with ASP.NET Core, hosted in Microsoft Azure, offers numerous competitive 

advantages over traditional alternatives. ASP.NET Core is optimized for modern web application 

development practices and cloud hosting scenarios. In this guide, you will learn how to architect your 

ASP.NET Core applications to best take advantage of these capabilities. 
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Purpose  
This guide provides end-to-end guidance on building monolithic web applications using ASP.NET 

Core and Azure.   

This guide is complementary to the “Architecting and Developing Containerized and Microservice-

based Applications with .NET” which focuses more on Docker, Microservices, and Deployment of 

Containers to host enterprise applications. 

Architecting and Developing Containerized Microservice Based Apps in .NET 

eBook 
http://aka.ms/MicroservicesEbook  

Sample Application 
http://aka.ms/microservicesarchitecture 

Who should use this guide 

The audience for this guide is mainly developers, development leads, and architects who are 

interested in building modern web applications using Microsoft technologies and services in the 

cloud.  

A secondary audience is technical decision makers who are already familiar ASP.NET and/or Azure and 

are looking for information on whether it makes sense to upgrade to ASP.NET Core for new or 

existing projects.  

How you can use this guide 

This guide has been condensed into a relatively small document that focuses on building web 

applications with modern .NET technologies and Windows Azure. As such, it can be read in its entirety 

to provide a foundation of understanding such applications and their technical considerations. The 

guide, along with its sample application, can also serve as a starting point or reference. Use the 

associated sample application as a template for your own applications, or to see how you might 

organize your application’s component parts. Refer back to the guide’s principles and coverage of 

architecture and technology options and decision considerations when weighing these choices for 

your own application. 

Feel free to forward this guide to your team to help ensure a common understanding of these 

considerations and opportunities. Having everybody working from a common set of terminology and 

underlying principles will help ensure consistent application of architectural patterns and practices. 

References 

Choosing between .NET Core and .NET Framework for server apps 

https://docs.microsoft.com/en-us/dotnet/articles/standard/choosing-core-framework-server  

 

 

http://aka.ms/MicroservicesEbook
http://aka.ms/microservicesarchitecture
https://docs.microsoft.com/en-us/dotnet/articles/standard/choosing-core-framework-server
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Characteristics of 
Modern Web 
Applications 

“… with proper design, the features come cheaply. This approach is arduous, but 

continues to succeed.” 

Dennis Ritchie 

Summary 

Modern web applications have higher user expectations and greater demands than ever before. 

Today’s web apps are expected to be available 24/7 from anywhere in the world, and usable from 

virtually any device or screen size. Web applications must be secure, flexible, and scalable to meet 

spikes in demand. Increasingly, complex scenarios should be handled by rich user experiences built on 

the client using JavaScript, and communicating efficiently through web APIs. 

ASP.NET Core is optimized for modern web applications and cloud-based hosting scenarios. Its 

modular design enables applications to depend on only those features they actually use, improving 

application security and performance while reducing hosting resource requirements.  

Reference Application: eShopOnWeb 

This guidance includes a reference application, eShopOnWeb, that demonstrates some of the 

principles and recommendations. The application is a simple online store which supports browsing 

through a catalog of shirts, coffee mugs, and other marketing items. The reference application is 

deliberately simple in order to make it easy to understand. 

Figure 2-1. eShopOnWeb 
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Reference Application 

eShopOnWeb 

https://github.com/dotnet/eShopOnWeb  

 

Cloud-Hosted and Scalable 

ASP.NET Core is optimized for the cloud (public cloud, private cloud, any cloud) because it is low-

memory and high-throughput. The smaller footprint of ASP.NET Core applications means you can 

host more of them on the same hardware, and you pay for fewer resources when using pay-as-you go 

cloud hosting services. The higher-throughput means you can serve more customers from an 

application given the same hardware, further reducing the need to invest in servers and hosting 

infrastructure. 

Cross Platform 

ASP.NET Core is cross-platform, and can run on Linux and MacOS as well as Windows. This opens up 

many new options for both development and deployment of apps built with ASP.NET Core. Docker 

containers, which typically run Linux today, can host ASP.NET Core applications, allowing them to take 

advantage of the benefits of containers and microservices (link to microservices and containers 

ebook). 

https://github.com/dotnet/eShopOnWeb
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Modular and Loosely Coupled 

NuGet packages are first-class citizens in .NET Core, and ASP.NET Core apps are composed of many 

libraries through NuGet. This granularity of functionality helps ensure apps only depend on and 

deploy functionality they actually require, reducing their footprint and security vulnerability surface 

area.  

ASP.NET Core also fully supports dependency injection, both internally and at the application level. 

Interfaces can have multiple implementations that can be swapped out as needed. Dependency 

injection allows apps to loosely couple to those interfaces, making them easier to extend, maintain, 

and test. 

Easily Tested with Automated Tests 

ASP.NET Core applications support unit testing, and their loose coupling and support for dependency 

injections makes it easy to swap infrastructure concerns with fake implementations for test purposes. 

ASP.NET Core also ships a TestServer that can be used to host apps in memory. Functional tests can 

then make requests to this in-memory server, exercising the full application stack (including 

middleware, routing, model binding, filters, etc.) and receiving a response, all in a fraction of the time 

it would take to host the app on a real server and make requests through the network layer. These 

tests are especially easy to write, and valuable, for APIs, which are increasingly important in modern 

web applications. 

Traditional and SPA Behaviors Supported 

Traditional web applications have involved little client-side behavior, but instead have relied on the 

server for all navigation, queries, and updates the app might need to make. Each new operation made 

by the user would be translated into a new web request, with the result being a full page reload in the 

end user’s browser. Classic Model-View-Controller (MVC) frameworks typically follow this approach, 

with each new request corresponding to a different controller action, which in turn would work with a 

model and return a view. Some individual operations on a given page might be enhanced with AJAX 

(Asynchronous JavaScript and XML) functionality, but the overall architecture of the app used many 

different MVC views and URL endpoints. 

Single Page Applications (SPAs), by contrast, involve very few dynamically generated server-side page 

loads (if any). Many SPAs are initialized within a static HTML file which loads the necessary JavaScript 

libraries to start and run the app. These apps make heavy usage of web APIs for their data needs, and 

can provide much richer user experiences.  

Many web applications involve a combination of traditional web application behavior (typically for 

content) and SPAs (for interactivity). ASP.NET Core supports both MVC and web APIs in the same 

application, using the same set of tools and underlying framework libraries. 

Simple Development and Deployment 

ASP.NET Core applications can be written using simple text editors and command line interfaces, or 

full-featured development environments like Visual Studio. Monolithic applications are typically 
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deployed to a single endpoint. Deployments can easily be automated to occur as part of a continuous 

integration (CI) and continuous delivery (CD) pipeline. In addition to traditional CI/CD tools, Windows 

Azure has integrated support for git repositories and can automatically deploy updates as they are 

made to a specified git branch or tag. 

Traditional ASP.NET and Web Forms 
In addition to ASP.NET Core, traditional ASP.NET 4.x continues to be a robust and reliable platform for 

building web applications. ASP.NET supports MVC and Web API development models, as well as Web 

Forms, which is well-suited to rich page-based application development and features a rich third-

party component ecosystem. Windows Azure has great longstanding support for ASP.NET 4.x 

applications, and many developers are familiar with this platform. 

 

References – Modern Web Applications  

Introduction to ASP.NET Core 

https://docs.microsoft.com/en-us/aspnet/core/  

Six Key Benefits of ASP.NET Core which make it Different and Better 

http://blog.trigent.com/six-key-benefits-of-asp-net-core-1-0-which-make-it-different-better/  

Testing in ASP.NET Core 

https://docs.microsoft.com/en-us/aspnet/core/testing/  

 

https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/testing/
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Choosing 
Between 
Traditional Web 
Apps and Single 
Page Apps (SPAs) 

“Atwood’s Law: Any application that can be written in JavaScript, will eventually be 

written in JavaScript.” 

Jeff Atwood 

Summary 

There are two general approaches to building web applications today: traditional web applications 

that perform most of the application logic on the server, and single page applications (SPAs) that 

perform most of the user interface logic in a web browser, communicating with the web server 

primarily using web APIs. A hybrid approach is also possible, the simplest being host one or more rich 

SPA-like sub-applications within a larger traditional web application. 
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You should use traditional web applications when: 

 Your application’s client-side requirements are simple or even read-only. 

 Your application needs to function in browsers without JavaScript support. 

 Your team is unfamiliar with JavaScript or TypeScript development techniques. 

You should use a SPA when: 

 Your application must expose a rich user interface with many features. 

 Your team is familiar with JavaScript and/or TypeScript development. 

 Your application must already expose an API for other (internal or public) clients. 

Additionally, SPA frameworks require greater architectural and security expertise. They experience 

greater churn due to frequent updates and new frameworks than traditional web applications. 

Configuring automated build and deployment processes and utilizing deployment options like 

containers are more difficult with SPA applications than traditional web apps. 

Improvements in user experience made possible by SPA model must be weighed against these 

considerations.  

When to choose traditional web apps 

The following is a more detailed explanation of the previously-stated reasons for picking traditional 

web applications. 

Your application has simple, possibly read-only, client-side requirements 

Many web applications are primarily consumed in a read-only fashion by the vast majority of their 

users. Read-only (or read-mostly) applications tend to be much simpler than those that maintain and 

manipulate a great deal of state. For example, a search engine might consist of a single entry point 

with a textbox and a second page for displaying search results. Anonymous users can easily make 

requests, and there is little need for client-side logic. Likewise, a blog or content management 

system’s public-facing application usually consists mainly of content with little client-side behavior. 

Such applications are easily built as traditional server-based web applications which perform logic on 

the web server and render HTML to be displayed in the browser. The fact that each unique page of 

the site has its own URL that can be bookmarked and indexed by search engines (by default, without 

having to add this as a separate feature of the application) is also a clear benefit in such scenarios. 

Your application needs to function in browsers without JavaScript support 

Web applications that need to function in browsers with limited or no JavaScript support should be 

written using traditional web app workflows (or at least be able to fall back to such behavior). SPAs 

require client-side JavaScript in order to function; if it’s not available, SPAs are not a good choice. 

Your team is unfamiliar with JavaScript or TypeScript development techniques 

If your team is unfamiliar with JavaScript or TypeScript, but is familiar with server-side web application 

development, then they will probably be able to deliver a traditional web app more quickly than a 

SPA. Unless learning to program SPAs is a goal, or the user experience afforded by a SPA is required, 
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traditional web apps are a more productive choice for teams who are already familiar with building 

them. 

When to choose SPAs 

The following is a more detailed explanation of when to choose a Single Page Applications style of 

development for your web app. 

Your application must expose a rich user interface with many features 

SPAs can support rich client-side functionality that doesn’t require reloading the page as users take 

actions or navigate between areas of the app. SPAs can load more quickly, fetching data in the 

background, and individual user actions are more responsive since full page reloads are rare. SPAs can 

support incremental updates, saving partially completed forms or documents without the user having 

to click a button to submit a form. SPAs can support rich client-side behaviors, such as drag-and-drop, 

much more readily than traditional applications. SPAs can be designed to run in a disconnected mode, 

making updates to a client-side model that are eventually synchronized back to the server once a 

connection is re-established. You should choose a SPA style application if your app’s requirements 

include rich functionality that goes beyond what typical HTML forms offer. 

Note that frequently SPAs need to implement features that are built-in to traditional web apps, such 

as displaying a meaningful URL in the address bar reflecting the current operation (and allowing users 

to bookmark or deep link to this URL to return to it). SPAs also should allow users to use the browser’s 

back and forward buttons with results that won’t surprise them. 

Your team is familiar with JavaScript and/or TypeScript development 

Writing SPAs requires familiarity with JavaScript and/or TypeScript and client-side programming 

techniques and libraries. Your team should be competent in writing modern JavaScript using a SPA 

framework like Angular. 

References – SPA Frameworks  

AngularJS 

https://angularjs.org/  

Comparison of 4 Popular JavaScript Frameworks 

https://www.developereconomics.com/feature-comparison-of-4-popular-js-mv-frameworks 

 

Your application must already expose an API for other (internal or public) clients 

If you’re already supporting a web API for use by other clients, it may require less effort to create a 

SPA implementation that leverages these APIs rather than reproducing the logic in server-side form. 

SPAs make extensive use of web APIs to query and update data as users interact with the application. 

  

https://angularjs.org/
https://www.developereconomics.com/feature-comparison-of-4-popular-js-mv-frameworks
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Decision table – Traditional Web or SPA 

The following decision table summarizes some of the basic factors to consider when choosing 

between a traditional web application and a SPA. 

Factor Traditional Web App Single Page Application 

Required Team Familiarity with 

JavaScript/TypeScript 

Minimal Required 

Support Browsers without 

Scripting 

Supported Not Supported 

Minimal Client-Side 

Application Behavior 

Well-Suited Overkill 

 

Rich, Complex User Interface 

Requirements 

Limited Well-Suited 
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Architectural 
Principles 

“If builders built buildings the way programmers wrote programs, then the first 

woodpecker that came along would destroy civilization.” 

Gerald Weinberg 

Summary 

You should architect and design software solutions with maintainability in mind. The principles 

outlined in this section can help guide you toward architectural decisions that will result in clean, 

maintainable applications. Generally, these principles will guide you toward building applications out 

of discrete components that are not tightly coupled to other parts of your application, but rather 

communicate through explicit interfaces or messaging systems. 

Common design principles 

Separation of Concerns 

A guiding principle when developing is Separation of Concerns. This principle asserts that software 

should be separated based on the kinds of work it performs. For instance, consider an application that 

includes logic for identifying noteworthy items to display to the user, and which formats such items in 

a particular way to make them more noticeable. The behavior responsible for choosing which items to 

format should be kept separate from the behavior responsible for formatting the items, since these 

are separate concerns that are only coincidentally related to one another. 

Architecturally, applications can be logically built to follow this principle by separating core business 

behavior from infrastructure and user interface logic. Ideally, business rules and logic should reside in 

a separate project, which should not depend on other projects in the application. This helps ensure 

that the business model is easy to test and can evolve without being tightly coupled to low-level 

implementation details. Separation of concerns is a key consideration behind the use of layers in 

application architectures. 
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Encapsulation 

Different parts of an application should use encapsulation to insulate them from other parts of the 

application. Application components and layers should be able to adjust their internal implementation 

without breaking their collaborators as long as external contracts are not violated. Proper use of 

encapsulation helps achieve loose coupling and modularity in application designs, since objects and 

packages can be replaced with alternative implementations so long as the same interface is 

maintained. 

In classes, encapsulation is achieved by limiting outside access to the class’s internal state. If an 

outside actor wants to manipulate the state of the object, it should do so through a well-defined 

function (or property setter), rather than having direct access to the private state of the object. 

Likewise, application components and applications themselves should expose well-defined interfaces 

for their collaborators to use, rather than allowing their state to be modified directly. This frees the 

application’s internal design to evolve over time without worrying that doing so will break 

collaborators, so long as the public contracts are maintained. 

Dependency Inversion 

The direction of dependency within the application should be in the direction of abstraction, not 

implementation details. Most applications are written such that compile-time dependency flows in the 

direction of runtime execution. This produces a direct dependency graph. That is, if module A calls a 

function in module B, which calls a function in module C, then at compile time A will depend on B 

which will depend on C, as shown in Figure 4-X. 
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Figure 4-X. Direct dependency graph. 

 

Applying the dependency inversion principle allows A to call methods on an abstraction that B 

implements, making it possible for A to call B at runtime, but for B to depend on an interface 

controlled by A at compile time (thus, inverting the typical compile-time dependency). At run time, the 

flow of program execution remains unchanged, but the introduction of interfaces means that different 

implementations of these interfaces can easily be plugged in. 
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Figure 4-X. Inverted dependency graph. 

 

Dependency inversion is a key part of building loosely-coupled applications, since implementation 

details can be written to depend on and implement higher level abstractions, rather than the other 

way around. The resulting applications are more testable, modular, and maintainable as a result. The 

practice of dependency injection is made possible by following the dependency inversion principle. 

Explicit Dependencies 

Methods and classes should explicitly require any collaborating objects they need in order to 

function correctly. Class constructors provide an opportunity for classes to identify the things they 

need in order to be in a valid state and to function properly. If you define classes that can be 

constructed and called, but which will only function properly if certain global or infrastructure 

components are in place, these classes are being dishonest with their clients. The constructor contract 

is telling the client that it only needs the things specified (possibly nothing if the class is just using a 

default constructor), but then at runtime it turns out the object really did need something else. 

By following the explicit dependencies principle, your classes and methods are being honest with their 

clients about what they need in order to function. This makes your code more self-documenting and 

your coding contracts more user-friendly, since users will come to trust that as long as they provide 

what’s required in the form of method or constructor parameters, the objects they’re working with will 

behave correctly at runtime. 

Single Responsibility 

The single responsibility principle applies to object-oriented design, but can also be considered as an 

architectural principle similar to separation of concerns. It states that objects should have only one 

responsibility and that they should have only one reason to change. Specifically, the only situation in 

which the object should change is if the manner in which it performs its one responsibility must be 
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updated. Following this principle helps to produce more loosely-coupled and modular systems, since 

many kinds of new behavior can be implemented as new classes, rather than by adding additional 

responsibility to existing classes. Adding new classes is always safer than changing existing classes, 

since no code yet depends on the new classes. 

In a monolithic application, we can apply the single responsibility principle at a high level to the layers 

in the application. Presentation responsibility should remain in the UI project, while data access 

responsibility should be kept within an infrastructure project. Business logic should be kept in the 

application core project, where it can be easily tested and can evolve independently from other 

responsibilities. 

When this principle is applied to application architecture, and taken to its logical endpoint, you get 

microservices. A given microservice should have a single responsibility. If you need to extend the 

behavior of a system, it’s usually better to do it by adding additional microservices, rather than by 

adding responsibility to an existing one. 

Learn more about microservices architecture 

Don’t Repeat Yourself (DRY) 

The application should avoid specifying behavior related to a particular concept in multiple places as 

this is a frequent source of errors. At some point, a change in requirements will require changing this 

behavior and the likelihood that at least one instance of the behavior will fail to be updated will result 

in inconsistent behavior of the system. 

Rather than duplicating logic, encapsulate it in a programming construct. Make this construct the 

single authority over this behavior, and have any other part of the application that requires this 

behavior use the new construct. 

Note: Avoid binding together behavior that is only coincidentally repetitive. For example, just because 

two different constants both have the same value, that doesn’t mean you should have only one 

constant, if conceptually they’re referring to different things. 

  

http://aka.ms/MicroservicesEbook
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Persistence Ignorance 

Persistence ignorance (PI) refers to types that need to be persisted, but whose code is unaffected by 

the choice of persistence technology. Such types in .NET are sometimes referred to as Plain Old CLR 

Objects (POCOs), because they do not need to inherit from a particular base class or implement a 

particular interface. Persistence ignorance is valuable because it allows the same business model to be 

persisted in multiple ways, offering additional flexibility to the application. Persistence choices might 

change over time, from one database technology to another, or additional forms of persistence might 

be required in addition to whatever the application started with (e.g. using a Redis cache or Azure 

DocumentDb in addition to a relational database). 

Some examples of violations of this principle include: 

 A required base class 

 A required interface implementation 

 Classes responsible for saving themselves (such as the Active Record pattern) 

 Required default constructor 

 Properties requiring virtual keyword 

 Persistence-specific required attributes 

The requirement that classes have any of the above features or behaviors adds coupling between the 

types to be persisted and the choice of persistence technology, making it more difficult to adopt new 

data access strategies in the future. 
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Bounded Contexts 

Bounded contexts are a central pattern in Domain-Driven Design. They provide a way of tackling 

complexity in large applications or organizations by breaking it up into separate conceptual modules. 

Each conceptual module then represents a context which is separated from other contexts (hence, 

bounded), and can evolve independently. Each bounded context should ideally be free to choose its 

own names for concepts within it, and should have exclusive access to its own persistence store. 

At a minimum, individual web applications should strive to be their own bounded context, with their 

own persistence store for their business model, rather than sharing a database with other applications. 

Communication between bounded contexts occurs through programmatic interfaces, rather than 

through a shared database, which allows for business logic and events to take place in response to 

changes that take place. Bounded contexts map closely to microservices, which also are ideally 

implemented as their own individual bounded contexts. 
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Application 
Architectures 

“If you think good architecture is expensive, try bad architecture.” 

Brian Foote and Joseph Yoder 

Summary 

Most traditional .NET applications are deployed as single units corresponding to an executable or a 

single web application running within a single IIS appdomain. This is the simplest deployment model 

and serves many internal and smaller public applications very well. However, even given this single 

unit of deployment, most non-trivial business applications benefit from some logical separation into 

several layers. 

What is a monolithic application? 

A monolithic application is one that is entirely self-contained, in terms of its behavior. It may interact 

with other services or data stores in the course of performing its operations, but the core of its 

behavior runs within its own process and the entire application is typically deployed as a single unit. If 

such an application needs to scale horizontally, typically the entire application is duplicated across 

multiple servers or virtual machines. 

All-in-One applications 

The smallest possible number of projects for an application architecture is one. In this architecture, the 

entire logic of the application is contained in a single project, compiled to a single assembly, and 

deployed as a single unit. 

A new ASP.NET Core project, whether created in Visual Studio or from the command line, starts out as 

a simple “all-in-one” monolith. It contains all of the behavior of the application, including 

presentation, business, and data access logic. Figure 5-1 shows the file structure of a single-project 

app. 
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Figure 5-1. A single project ASP.NET Core app 

 

In a single project scenario, separation of concerns is achieved through the use of folders. The default 

template includes separate folders for MVC pattern responsibilities of Models, Views, and Controllers, 

as well as additional folders for Data and Services. In this arrangement, presentation details should be 

limited as much as possible to the Views folder, and data access implementation details should be 

limited to classes kept in the Data folder. Business logic should reside in services and classes within 

the Models folder. 

Although simple, the single-project monolithic solution has some disadvantages. As the project’s size 

and complexity grows, the number of files and folders will continue to grow as well. UI concerns 

(models, views, controllers) reside in multiple folders, which are not grouped together alphabetically. 

This issue only gets worse when additional UI-level constructs, such as Filters or ModelBinders, are 

added in their own folders. Business logic is scattered between the Models and Services folders, and 

there is no clear indication of which classes in which folders should depend on which others. This lack 

of organization at the project level frequently leads to spaghetti code. 

In order to address these issues, applications often evolve into multi-project solutions, where each 

project is considered to reside in a particular layer of the application.  

What are layers? 

As applications grow in complexity, one way to manage that complexity is to break the application up 

according to its responsibilities or concerns. This follows the separation of concerns principle, and can 

help keep a growing codebase organized so that developers can easily find where certain functionality 

is implemented. Layered architecture offers a number of advantages beyond just code organization, 

though. 

http://deviq.com/spaghetti-code/
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By organizing code into layers, common low-level functionality can be reused throughout the 

application. This reuse is beneficial because it means less code needs to be written and because it can 

allow the application to standardize on a single implementation, following the DRY principle. 

With a layered architecture, applications can enforce restrictions on which layers can communicate 

with other layers. This helps to achieve encapsulation. When a layer is changed or replaced, only those 

layers that work with it should be impacted. By limiting which layers depend on which other layers, the 

impact of changes can be mitigated so that a single change doesn’t impact the entire application. 

Layers (and encapsulation) make it much easier to replace functionality within the application. For 

example, an application might initially use its own SQL Server database for persistence, but later could 

choose to use a cloud-based persistence strategy, or one behind a web API. If the application has 

properly encapsulated its persistence implementation within a logical layer, that SQL Server specific 

layer could be replaced by a new one implementing the same public interface. 

In addition to the potential of swapping out implementations in response to future changes in 

requirements, application layers can also make it easier to swap out implementations for testing 

purposes. Instead of having to write tests that operate against the real data layer or UI layer of the 

application, these layers can be replaced at test time with fake implementations that provide known 

responses to requests. This typically makes tests much easier to write and much faster to run when 

compared to running tests again the application’s real infrastructure. 

Logical layering is a common technique for improving the organization of code in enterprise software 

applications, and there are several ways in which code can be organized into layers. 

Note: Layers represent logical separation within the application. In the event that application logic is 

physically distributed to separate servers or processes, these separate physical deployment targets are 

referred to as tiers. It’s possible, and quite common, to have an N-Layer application that is deployed 

to a single tier. 
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Traditional “N-Layer” architecture applications 

The most common organization of application logic into layers it shown in Figure 5-2. 

Figure 5-2. Typical application layers. 

 

 

These layers are frequently abbreviated as UI, BLL (Business Logic Layer), and DAL (Data Access Layer). 

Using this architecture, users make requests through the UI layer, which interacts only with the BLL. 

The BLL, in turn, can call the DAL for data access requests. The UI layer should not make any requests 

to the DAL directly, nor should it interact with persistence directly through other means. Likewise, the 

BLL should only interact with persistence by going through the DAL. In this way, each layer has its own 

well-known responsibility. 

One disadvantage of this traditional layering approach is that compile-time dependencies run from 

the top to the bottom. That is, the UI layer depends on the BLL, which depends on the DAL. This 

means that the BLL, which usually holds the most important logic in the application, is dependent on 

data access implementation details (and often on the existence of a database). Testing business logic 

in such an architecture is often difficult, requiring a test database. The dependency inversion principle 

can be used to address this issue, as you’ll see in the next section. 
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Figure 5-3 shows an example solution, breaking the application into three projects by responsibility 

(or layer). 

Figure 5-3. A simple monolithic application with three projects. 

 

Although this application uses several projects for organizational purposes, it is still deployed as a 

single unit and its clients will interact with it as a single web app. This allows for very simple 

deployment process. Figure 5-4 shows how such an app might be hosted using Windows Azure. 
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Figure 5-4. Simple deployment of Azure Web App 

As application needs grow, more complex and robust deployment solutions may be required. Figure 

5-5 shows an example of a more complex deployment plan that supports additional capabilities. 
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Figure 5-5. Deploying a web app to an Azure App Service 

Internally, this project’s organization into multiple projects based on responsibility improves the 

maintainability of the application.  

This unit can be scaled up or out to take advantage of cloud-based on-demand scalability. Scaling up 

means adding additional CPU, memory, disk space, or other resources to the server(s) hosting your 

app. Scaling out means adding additional instances of such servers, whether these are physical servers 

or virtual machines. When your app is hosted across multiple instances, a load balancer is used to 

assign requests to individual app instances. 

The simplest approach to scaling a web application in Azure is to configure scaling manually in the 

application’s App Service Plan. Figure 5-6 show the appropriate Azure dashboard screen to configure 

how many instances are serving an app. 
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Figure 5-X. App Service Plan scaling in Azure. 

 

Clean architecture 

Applications that follow the Dependency Inversion Principle as well as Domain-Driven Design (DDD) 

principles tend to arrive at a similar architecture. This architecture has gone by many names over the 

years. One of the first names was Hexagonal Architecture, followed by Ports-and-Adapters. More 

recently, it’s been cited as the Onion Architecture or Clean Architecture. It is this last name, Clean 

Architecture, that is used as the basis for describing the architecture in this eBook. 

Note: The term Clean Architecture can be applied to applications that are built using DDD Principles 

as well as to those that are not built using DDD. In the case of the former, this combination may be 

referred to as “Clean DDD Architecture”. 

Clean architecture puts the business logic and application model at the center of the application. 

Instead of having business logic depend on data access or other infrastructure concerns, this 

dependency is inverted: infrastructure and implementation details depend on the Application Core. 

This is achieved by defining abstractions, or interfaces, in the Application Core, which are then 

implemented by types defined in the Infrastructure layer. A common way of visualizing this 

architecture is to use a series of concentric circles, similar to an onion. Figure 5-X shows an example of 

this style of architectural representation. 

 

http://jeffreypalermo.com/blog/the-onion-architecture-part-1/
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
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Figure 5-X. Clean Architecture; onion view 

In this diagram, dependencies flow toward the innermost circle. Thus, you can see that the Application 

Core (which takes its name from its position at the core of this diagram) has no dependencies on 

other application layers. At the very center are the application’s entities and interfaces. Just outside, 

but still in the Application Core, are domain services, which typically implement interfaces defined in 

the inner circle. Outside of the Application Core, both the User Interface and the Infrastructure layers 

depend on the Application Core, but not on one another (necessarily). 

Figure 5-X shows a more traditional horizontal layer diagram that better reflects the dependency 

between the UI and other layers. 
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Figure 5-X. Clean Architecture; horizontal layer view 

Note that the solid arrows represent compile-time dependencies, while the dashed arrow represents a 

runtime-only dependency. Using the clean architecture, the UI layer works with interfaces defined in 

the Application Core at compile time, and ideally should not have any knowledge of the 

implementation types defined in the Infrastructure layer. At runtime, however, these implementation 

types will be required for the app to execute, so they will need to be present and wired up to the 

Application Core interfaces via dependency injection. 

Figure 5-X shows a more detailed view of an ASP.NET Core application’s architecture when built 

following these recommendations. 
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Figure 5-X. ASP.NET Core architecture diagram following Clean Architecture. 

Because the Application Core doesn’t depend on Infrastructure, it is very easy to write automated unit 

tests for this layer. Figures 5-X and 5-X show how tests fit into this architecture. 

 

 

Figure 5-X. Unit testing Application Core in isolation. 
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Figure 5-X. Integration testing Infrastructure implementations with external dependencies. 

Since the UI layer doesn’t have any direct dependency on types defined in the Infrastructure project, it 

is likewise very easy to swap out implementations, either to facilitate testing or in response to 

changing application requirements. ASP.NET Core’s built-in use of and support for dependency 

injection makes this architecture the most appropriate way to structure non-trivial monolithic 

applications. 
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For monolithic applications the Application Core, Infrastructure, and User Interface projects are all run 

as a single application. The runtime application architecture might look something like Figure 5-X. 

 

Figure 5-X. A sample ASP.NET Core app’s runtime architecture. 

Organizing Code in Clean Architecture 

In a Clean Architecture solution, each project has clear responsibilities. As such, certain types will 

belong in each project and you’ll frequently find folders corresponding to these types in the 

appropriate project. 

The Application Core holds the business model, which includes entities, services, and interfaces. These 

interfaces include abstractions for operations that will be performed using Infrastructure, such as data 

access, file system access, network calls, etc. Sometimes services or interfaces defined at this layer will 

need to work with non-entity types that have no dependencies on UI or Infrastructure. These can be 

defined as simple Data Transfer Objects (DTOs). 

Application Core Types  

 Entities (business model classes that are persisted) 

 Interfaces 

 Services 

 DTOs 

 

The Infrastructure project will typically include data access implementations. In a typical ASP.NET Core 

web application, this will include the Entity Framework DbContext, any EF Core Migrations that have 

been defined, and data access implementation classes. The most common way to abstract data access 

implementation code is through the use of the Repository design pattern. 

http://deviq.com/repository-pattern/
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In addition to data access implementations, the Infrastructure project should contain implementations 

of services that must interact with infrastructure concerns. These services should implement interfaces 

defined in the Application Core, and so Infrastructure should have a reference to the Application Core 

project. 

Infrastructure Types  

 EF Core types (DbContext, Migrations) 

 Data access implementation types (Repositories) 

 Infrastructure-specific services (FileLogger, SmtpNotifier, etc.) 

 

The user interface layer in an ASP.NET Core MVC application will be the entry point for the 

application, and will be an ASP.NET Core MVC project. This project should reference the Application 

Core project, and its types should interact with infrastructure strictly through interfaces defined in 

Application Core. No direct instantiation of (or static calls to) Infrastructure layer types should be 

permitted in the UI layer. 

UI Layer Types  

 Controllers 

 Filters 

 Views 

 ViewModels 

 Startup 

 

The Startup class is responsible for configuring the application, and for wiring up implementation 

types to interfaces, allowing dependency injection to work properly at run time. 

Note: In order to wire up dependency injection in ConfigureServices in the Startup.cs file of the UI 

project, the project may need to reference the Infrastructure project. This dependency can be 

eliminated, most easily by using a custom DI container. For the purposes of this sample, the simplest 

approach is to allow the UI project to reference the Infrastructure project. 

Monolithic Applications and Containers  

You can build a single and monolithic-deployment based Web Application or Service and deploy it as 

a container. Within the application, it might not be monolithic but organized into several libraries, 

components or layers. Externally it is a single container like a single process, single web application or 

single service. 

To manage this model, you deploy a single container to represent the application. To scale, just add 

additional copies with a load balancer in front. The simplicity comes from managing a single 

deployment in a single container or VM. 



 

 

32    Chapter 5 

Common Web Application Architectures 

 

 

You can include multiple components/libraries or internal layers within each container, as illustrated in 

Figure 5-X. But, following the container principal of “a container does one thing, and does it in one 

process”, the monolithic pattern might be a conflict.   

The downside of this approach comes if/when the application grows, requiring it to scale. If the entire 

application scaled, it’s not really a problem. However, in most cases, a few parts of the application are 

the choke points requiring scaling, while other components are used less.  

Using the typical eCommerce example; what you likely need to scale is the product information 

component. Many more customers browse products than purchase them. More customers use their 

basket than use the payment pipeline. Fewer customers add comments or view their purchase history. 

And you likely only have a handful of employees, in a single region, that need to manage the content 

and marketing campaigns. By scaling the monolithic design, all the code is deployed multiple times.  

In addition to the scale everything problem, changes to a single component require complete 

retesting of the entire application, and a complete redeployment of all the instances.  

The monolithic approach is common, and many organizations are developing with this architectural 

approach. Many are having good enough results, while others are hitting limits. Many designed their 

applications in this model, because the tools and infrastructure were too difficult to build service 

oriented architectures (SOA), and they didn’t see the need - until the app grew. If you find you’re 

hitting the limits of the monolithic approach, breaking the app up to enable it to better leverage 

containers and microservices may be the next logical step. 

Figure 5-X. Monolithic application architecture example 



 

 

33    Chapter 5 

Common Web Application Architectures 

 

Deploying monolithic applications in Microsoft Azure can be achieved using dedicated VMs for each 

instance. Using Azure VM Scale Sets, you can easily scale the VMs. Azure App Services can run 

monolithic applications and easily scale instances without having to manage the VMs. Azure App 

Services can run single instances of Docker containers as well, simplifying the deployment. Using 

Docker, you can deploy a single VM as a Docker host, and run multiple instances. Using the Azure 

balancer, as shown in the Figure 5-X, you can manage scaling.  

 

The deployment to the various hosts can be managed with traditional deployment techniques. The 

Docker hosts can be managed with commands like docker run performed manually, or through 

automation such as Continuous Delivery (CD) pipelines.  

Monolithic application deployed as a container 

There are benefits of using containers to manage monolithic application deployments. Scaling the 

instances of containers is far faster and easier than deploying additional VMs. Even when using VM 

Scale Sets to scale VMs, they take time to instance. When deployed as app instances, the 

configuration of the app is managed as part of the VM.  

Deploying updates as Docker images is far faster and network efficient. Docker Images typically start 

in seconds, speeding rollouts. Tearing down a Docker instance is as easy as issuing a docker stop 

command, typically completing in less than a second.  

As containers are inherently immutable by design, you never need to worry about corrupted VMs, 

whereas update scripts might forget to account for some specific configuration or file left on disk. 

While monolithic apps can benefit from Docker, breaking up the monolithic application into sub 

systems which can be scaled, developed and deployed individually may be your entry point into the 

realm of microservices. 
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 Common Client 
Side Web 
Technologies 

“Websites should look good from the inside and out.” 

Paul Cookson 

 

Summary 

ASP.NET Core applications are web applications and they typically rely on client-side web 

technologies like HTML, CSS, and JavaScript. By separating the content of the page (the HTML) from 

its layout and styling (the CSS), and its behavior (via JavaScript), complex web apps can leverage the 

Separation of Concerns principle. Future changes to the structure, design, or behavior of the 

application can be made more easily when these concerns are not intertwined. 

While HTML and CSS are relatively stable, JavaScript, by means of the application frameworks and 

utilities developers work with to build web-based applications, is evolving at breakneck speed. This 

chapter looks at a few ways JavaScript is used by web developers as part of developing applications, 

as provides a high-level overview of the Angular and React client side libraries. 

HTML 

HTML (HyperText Markup Language) is the standard markup language used to create web pages and 

web applications. Its elements form the building blocks of pages, representing formatted text, images, 

form inputs, and other structures. When a browser makes a request to a URL, whether fetching a page 

or an application, the first thing that is returned is an HTML document. This HTML document may 

reference or include additional information about its look and layout in the form of CSS, or behavior 

in the form of JavaScript. 
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CSS 

CSS (Cascading Style Sheets) is used to control the look and layout of HTML elements. CSS styles can 

be applied directly to an HTML element, defined separately on the same page, or defined in a 

separate file and referenced by the page. Styles cascade based on how they are used to select a given 

HTML element. For instance, a style might apply to an entire document, but would be overridden by a 

style that applied to a particular element. Likewise, an element-specific style would be overridden by a 

style that applied to a CSS class that was applied to the element, which in turn would be overridden 

by a style targeting a specific instance of that element (via its id). Figure 7-X  

Figure 7-X. CSS Specificity rules, in order. 

 

It’s best to keep styles in their own separate stylesheet files, and to use selection-based cascading to 

implement consistent and reusable styles within the application. Placing style rules within HTML 

should be avoided, and applying styles to specific individual elements (rather than whole classes of 

elements, or elements that have had a particular CSS class applied to them) should be the exception, 

not the rule. 

CSS Preprocessors 

CSS stylesheets lack support for conditional logic, variables, and other programming language 

features. Thus, large stylesheets often include a lot of repetition, as the same color, font, or other 

setting is applied to many different variations of HTML elements and CSS classes. CSS preprocessors 

can help your stylesheets follow the DRY principle by adding support for variables and logic. 

The most popular CSS preprocessors are Sass and LESS. Both extend CSS and are backward 

compatible with it, meaning that a plain CSS file is a valid Sass or LESS file. Sass is Ruby-based and 

LESS is JavaScript based, and both typically run as part of your local development process. Both have 

command line tools available, as well as built-in support in Visual Studio for running them using Gulp 

or Grunt tasks.  

http://deviq.com/don-t-repeat-yourself/
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JavaScript 

JavaScript is a dynamic, interpreted programming language that has been standardized in the 

ECMAScript language specification. It is the programming language of the web. Like CSS, JavaScript 

can be defined as attributes within HTML elements, as blocks of script within a page, or in separate 

files. Just like CSS, it’s generally recommended to organize JavaScript into separate files, keeping it 

separated as much as possible from the HTML found on individual web pages or application views. 

When working with JavaScript in your web application, there are a few tasks that you’ll commonly 

need to perform: 

 Selecting an HTML element and retrieving and/or updating its value 

 Querying a Web API for data 

 Sending a command to a Web API (and responding to a callback with its result) 

 Performing validation 

You can perform all of these tasks with JavaScript alone, but many libraries exist to make these tasks 

easier. One of the first and most successful of these libraries is jQuery, which continues to be a 

popular choice for simplifying these tasks on web pages. For Single Page Applications (SPAs), jQuery 

doesn’t provide many of the desired features that Angular and React offer. 

Legacy Web Apps with jQuery 

Although ancient by JavaScript framework standards, jQuery continues to be a very commonly used 

library for working with HTML/CSS and building applications that make AJAX calls to web APIs. 

However, jQuery operates at the level of the browser document object model (DOM), and by default 

offers only an imperative, rather than declarative, model.  

For example, imagine that if a textbox’s value exceeds 10, an element on the page should be made 

visible. In jQuery, this would typically be implemented by writing an event handler with code that 

would inspect the textbox’s value and set the visibility of the target element based on that value. This 

is an imperative, code-based approach. Another framework might instead use databinding to bind the 

visibility of the element to the value of the textbox declaratively. This would not require writing any 

code, but instead only requires decorating the elements involved with data binding attributes. As 

client side behaviors grow more complex, data binding approaches frequently result in simpler 

solutions with less code and conditional complexity. 

jQuery vs a SPA Framework 

Factor jQuery Angular 

Abstracts the DOM Yes Yes 

AJAX Support Yes Yes 

 

Declarative Data Binding No Yes 

MVC-style Routing No Yes 

Templating No Yes 
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Deep-Link Routing No Yes 

 

Most of the features jQuery lacks intrinsically can be added with the addition of other libraries. 

However, a SPA framework like Angular provides these features in a more integrated fashion, since it’s 

been designed with all of them in mind from the start. Also, jQuery is a very imperative library, 

meaning that you need to call jQuery functions in order to do anything with jQuery. Much of the work 

and functionality that SPA frameworks provide can be done declaratively, requiring no actual code to 

be written. 

Data binding is a great example of this. In jQuery, it usually only takes one line of code to get the 

value of a DOM element, or to set an element’s value. However, you have to write this code any time 

you need to change the value of the element, and sometimes this will occur in multiple functions on a 

page. Another common example is element visibility. In jQuery, there might be many different places 

where you would write code to control whether certain elements were visible. In each of these cases, 

when using data binding, no code would need to be written. You would simply bind the value or 

visibility of the element(s) in question to a viewmodel on the page, and changes to that viewmodel 

would automatically be reflected in the bound elements. 

Angular SPAs 

AngularJS quickly became one of the world’s most popular JavaScript frameworks. With Angular 2, the 

team rebuilt the framework from the ground up (using TypeScript) and rebranded from AngularJS to 

simply Angular. Currently on version 4, Angular continues to be a robust framework for building 

Single Page Applications. 

Angular applications are built from components. Components combine HTML templates with special 

objects and control a portion of the page. A simple component from Angular’s docs is shown here: 

import { Component } from '@angular/core'; 

 

@Component({ 

  selector: 'my-app', 

  template: `<h1>Hello {{name}}</h1>` 

}) 

export class AppComponent { name = 'Angular'; } 

Components are defined using the @Component decorator function, which takes in metadata about 

the component. The selector property identifies the id of the element on the page where this 

component will be displayed. The template property is a simple HTML template that includes a 

placeholder that corresponds to the component’s name property, defined on the last line. 

https://www.typescriptlang.org/
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By working with components and templates, instead of DOM elements, Angular apps can operate at a 

higher level of abstraction and with less overall code than apps written using just JavaScript (also 

called “vanilla JS”) or with jQuery. Angular also imposes some order on how you organize your client-

side script files. By convention, Angular apps use a common folder structure, with module and 

component script files located in an app folder. Angular scripts concerned with building, deploying, 

and testing the app are typically located in a higher-level folder. 

Angular also makes great use of command line interface (CLI) tooling. Getting started with Angular 

development locally (assuming you already have git and npm installed) consists of simply cloning a 

repo from GitHub and running `npm install` and `npm start`. Beyond this, Angular ships its own CLI 

tool which can create projects, add files, and assist with testing, bundling, and deployment tasks. This 

CLI tooling friendliness makes Angular especially compatible with ASP.NET Core, which also features 

great CLI support. 

Microsoft has developed a reference application, eShopOnContainers, which includes an Angular SPA 

implementation. This app includes Angular modules to manage the online store’s shopping basket, 

load and display items from its catalog, and handling order creation. You can view and download the 

sample application from GitHub.  

React 

Unlike Angular, which offers a full Model-View-Controller pattern implementation, React is only 

concerned with views. It’s not a framework, just a library, so to build a SPA you’ll need to leverage 

additional libraries.  

One of React’s most important features is its use of a virtual DOM. The virtual DOM provides React 

with several advantages, including performance (the virtual DOM can optimize which parts of the 

actual DOM need to be updated) and testability (no need to have a browser to test React and its 

interactions with its virtual DOM). 

React is also unusual in how it works with HTML. Rather than having a strict separation between code 

and markup (with references to JavaScript appearing in HTML attributes perhaps), React adds HTML 

directly within its JavaScript code as JSX. JSX is HTML-like syntax that can compile down to pure 

JavaScript. For example: 

<ul> 

  { authors.map(author =>  

    <li key={author.id}>{author.name}</li> 

 )} 

 </ul> 

If you already know JavaScript, learning React should be easy. There isn’t nearly as much learning 

curve or special syntax involved as with Angular or other popular libraries. 

Because React isn’t a full framework, you’ll typically want other libraries to handle things like routing, 

web API calls, and dependency management. The nice thing is, you can pick the best library for each 

http://aka.ms/MicroservicesArchitecture
https://github.com/dotnet-architecture/eShopOnContainers/tree/master/src/Web/WebSPA
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of these, but the disadvantage is that you need to make all of these decisions and verify all of your 

chosen libraries work well together when you’re done. If you want a good starting point, you can use 

a starter kit like React Slingshot, which prepackages a set of compatible libraries together with React. 

Choosing a SPA Framework 

When considering which JavaScript framework will work best to support your SPA, keep in mind the 

following considerations: 

 Is your team familiar with the framework and its dependencies (including TypeScript in some 

cases)? 

 How opinionated is the framework, and do you agree with its default way of doing things? 

 Does it (or a companion library) include all of the features your app requires? 

 Is it well-documented? 

 How active is its community? Are new projects building built with it? 

 How active is its core team? Are issues being resolved and new versions shipped regularly? 

JavaScript frameworks continue to evolve with breakneck speed. Use the considerations listed above 

to help mitigate the risk of choosing a framework you’ll later regret being dependent upon. If you’re 

particularly risk-averse, consider a framework that offers commercial support and/or is being 

developed by a large enterprise. 

 

References – Client Web Technologies  

HTML and CSS 

https://www.w3.org/standards/webdesign/htmlcss 

Sass vs. LESS 

https://www.keycdn.com/blog/sass-vs-less/ 

Styling ASP.NET Core Apps with LESS, Sass, and Font Awesome 

https://docs.microsoft.com/en-us/aspnet/core/client-side/less-sass-fa  

Client-Side Development in ASP.NET Core 

https://docs.microsoft.com/en-us/aspnet/core/client-side/  

jQuery 

https://jquery.com/  

jQuery vs AngularJS 

https://www.airpair.com/angularjs/posts/jquery-angularjs-comparison-migration-walkthrough  

Angular 

https://angular.io/  

React 

https://facebook.github.io/react/  

React Slingshot 

https://github.com/coryhouse/react-slingshot 

React vs Angular 2 Comparison 

https://www.codementor.io/codementorteam/react-vs-angular-2-comparison-beginners-guide-lvz5710ha 

5 Best JavaScript Frameworks of 2017 

https://hackernoon.com/5-best-javascript-frameworks-in-2017-7a63b3870282 

https://www.w3.org/standards/webdesign/htmlcss
https://docs.microsoft.com/en-us/aspnet/core/client-side/less-sass-fa
https://docs.microsoft.com/en-us/aspnet/core/client-side/
https://facebook.github.io/react/
https://github.com/coryhouse/react-slingshot
https://www.codementor.io/codementorteam/react-vs-angular-2-comparison-beginners-guide-lvz5710ha
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7 

 Developing 
ASP.NET Core 
MVC Apps 

“It’s not important to get it right the first time. It’s vitally important to get it right the 

last time.” 

Andrew Hunt and David Thomas 

 

Summary 

ASP.NET Core is a cross-platform, open-source framework for building modern cloud-optimized web 

applications. ASP.NET Core apps are lightweight and modular, with built-in support for dependency 

injection, enabling in greater testability and maintainability. Combined with MVC, which supports 

building modern web APIs in addition to view-based apps, ASP.NET Core is a powerful framework 

with which to build enterprise web applications. 

Mapping Requests to Responses 

At its heart, ASP.NET Core apps map incoming requests to outgoing responses. At a low level, this is 

done with middleware, and simple ASP.NET Core apps and microservices may be comprised solely of 

custom middleware. When using ASP.NET Core MVC, you can work at a somewhat higher level, 

thinking in terms of routes, controllers, and actions. Each incoming request is compared with the 

application’s routing table, and if a matching route is found, the associated action method (belonging 

to a controller) is called to handle the request. If no matching route is found, an error handler (in this 

case, returning a NotFound result) is called. 
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ASP.NET Core MVC apps can use conventional routes, attribute routes, or both. Conventional routes 

are defined in code, specifying routing conventions using syntax like in the example below: 

app.UseMvc(routes => 

{ 

routes.MapRoute("default","{controller=Home}/{action=Index}/{id?}"); 

}); 

In this example, a route named “default” has been added to the routing table. It defines a route 

template with placeholders for controller, action, and id. The controller and action placeholders have 

default specified (“Home” and “Index”, respectively), and the id placeholder is optional (by virtue of a 

“?” applied to it). The convention defined here states that the first part of a request should correspond 

to the name of the controller, the second part to the action, and then if necessary a third part will 

represent an id parameter. Conventional routes are typically defined in one place for the application, 

such as in the Configure method in the Startup class. 

Attribute routes are applied to controllers and actions directly, rather than specified globally. This has 

the advantage of making them much more discoverable when you’re looking at a particular method, 

but does mean that routing information is not kept in one place in the application. With attribute 

routes, you can easily specify multiple routes for a given action, as well as combine routes between 

controllers and actions. For example: 

[Route("Home")] 

public class HomeController : Controller 

{ 

[Route("")]   // Combines to define the route template "Home" 

[Route("Index")] // Combines to define route template "Home/Index" 

[Route("/")]  // Does not combine, defines the route template "" 

public IActionResult Index() {} 
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Routes can be specified on [HttpGet] and similar attributes, avoiding the need to add separate 

[Route] attributes. Attribute routes can also use tokens to reduce the need to repeat controller or 

action names, as shown below: 

[Route("[controller]")] 

public class ProductsController : Controller 

{ 

   [Route("")]     // Matches 'Products' 

   [Route("Index")] // Matches 'Products/Index' 

   public IActionResult Index() 

} 

Once a given request has been matched to a route, but before the action method is called, ASP.NET 

Core MVC will perform model binding and model validation on the request. Model binding is 

responsible for converting incoming HTTP data into the .NET types specified as parameters of the 

action method to be called. For example, if the action method expects an int id parameter, model 

binding will attempt to provide this parameter from a value provided as part of the request. To do so, 

model binding looks for values in a posted form, values in the route itself, and query string values. 

Assuming an id value is found, it will be converted to an integer before being passed into the action 

method. 

After binding the model but before calling the action method, model validation occurs. Model 

validation uses optional attributes on the model type, and can help ensure that the provided model 

object conforms to certain data requirements. Certain values may be specified as required, or limited 

to a certain length or numeric range, etc. If validation attributes are specified but the model does not 

conform to their requirements, the property ModelState.IsValid will be false, and the set of 

failing validation rules will be available to send to the client making the request. 

If you are using model validation, you should be sure to always check that the model is valid before 

performing any state-altering commands, to ensure your app is not corrupted by invalid data. You can 

use a filter to avoid the need to add code for this in every action. ASP.NET Core MVC filters offer a 

way of intercepting groups of requests, so that common policies and cross-cutting concerns can be 

applied on a targeted basis. Filters can be applied to individual actions, whole controllers, or globally 

for an application. 

  

https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters
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For web APIs, ASP.NET Core MVC supports content negotiation, allowing requests to specify how 

responses should be formatted. Based on headers provided in the request, actions returning data will 

format the response in XML, JSON, or another supported format. This feature enables the same API to 

be used by multiple clients with different data format requirements. 

References – Mapping Requests to Responses  

Routing to Controller Actions 

https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/routing 

Model Binding 

https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding 

Model Validation 

https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation 

Filters 

https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters 

 

 

Working with Dependencies 

ASP.NET Core has built-in support for and internally makes use of a technique known as dependency 

injection. Dependency injection is a technique that enabled loose coupling between different parts of 

an application. Looser coupling is desirable because it makes it easier to isolate parts of the 

application, allowing for testing or replacement. It also makes it less likely that a change in one part of 

the application will have an unexpected impact somewhere else in the application. Dependency 

injection is based on the dependency inversion principle, and is often key to achieving the 

open/closed principle. When evaluating how your application works with its dependencies, beware of 

the static cling code smell, and remember the aphorism “new is glue.” 

Static cling occurs when your classes make calls to static methods, or access static properties, which 

have side effects or dependencies on infrastructure. For example, if you have a method that calls a 

static method, which in turn writes to a database, your method is tightly coupled to the database. 

Anything that breaks that database call will break your method. Testing such methods is notoriously 

difficult, since such tests either require commercial mocking libraries to mock the static calls, or can 

only be tested with a test database in place. Static calls that don’t have any dependence on 

infrastructure, especially those that are completely stateless, are fine to call and have no impact on 

coupling or testability (beyond coupling code to the static call itself). 

Many developers understand the risks of static cling and global state, but will still tightly couple their 

code to specific implementations through direct instantiation. “New is glue” is meant to be a reminder 

of this coupling, and not a general condemnation of the use of the new keyword. Just as with static 

method calls, new instances of types that have no external dependencies typically do not tightly 

couple code to implementation details or make testing more difficult. But each time a class is 

instantiated, take just a brief moment to consider whether it makes sense to hard-code that specific 

instance in that particular location, or if it would be a better design to request that instance as a 

dependency. 

  

https://docs.microsoft.com/en-us/aspnet/core/mvc/models/formatting
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/routing
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
http://deviq.com/static-cling/
http://ardalis.com/new-is-glue
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Declare Your Dependencies 

ASP.NET Core is built around having methods and classes declare their dependencies, requesting 

them as arguments. ASP.NET applications are typically set up in a Startup class, which itself is 

configured to support dependency injection at several points. If your Startup class has a constructor, it 

can request dependencies through the constructor, like so: 

public class Startup 

{ 

  public Startup(IHostingEnvironment env) 

  { 

    var builder = new ConfigurationBuilder() 

      .SetBasePath(env.ContentRootPath) 

      .AddJsonFile("appsettings.json", optional: false, 

reloadOnChange: true) 

      .AddJsonFile($"appsettings.{env.EnvironmentName}.json", 

optional: true); 

  } 

} 

The Startup class is interesting in that there are no explicit type requirements for it. It doesn’t inherit 

from a special Startup base class, nor does it implement any particular interface. You can give it a 

constructor, or not, and you can specify as many parameters on the constructor as you want. When 

the web host you’ve configured for your application starts, it will call the Startup class you’ve told it to 

use, and will use dependency injection to populate any dependencies the Startup class requires. Of 

course, if you request parameters that aren’t configured in the services container used by ASP.NET 

Core, you’ll get an exception, but as long as you stick to dependencies the container knows about, 

you can request anything you want. 
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Dependency injection is built into your ASP.NET Core apps right from the start, when you create the 

Startup instance. It doesn’t stop there for the Startup class. You can also request dependencies in the 

Configure method: 

public void Configure(IApplicationBuilder app,  

    IHostingEnvironment env,  

    ILoggerFactory loggerFactory) 

{ 

} 

The ConfigureServices method is the exception to this behavior; it must take just one parameter 

of type IServiceCollection. It doesn’t really need to support dependency injection, since on the 

one hand it is responsible for adding objects to the services container, and on the other it has access 

to all currently configured services via the IServiceCollection parameter. Thus, you can work 

with dependencies defined in the ASP.NET Core services collection in every part of the Startup class, 

either by requesting the needed service as a parameter or by working with the 

IServiceCollection in ConfigureServices. 

Note: If you need to ensure certain services are available to your Startup class, you can configure 

them using WebHostBuilder and its ConfigureServices method. 

The Startup class is a model for how you should structure other parts of your ASP.NET Core 

application, from Controllers to Middleware to Filters to your own Services. In each case, you should 

follow the Explicit Dependencies Principle, requesting your dependencies rather than directly creating 

them, and leveraging dependency injection throughout your application. Be careful of where and how 

you directly instantiate implementations, especially services and objects that work with infrastructure 

or have side effects. Prefer working with abstractions defined in your application core and passed in as 

arguments to hardcoding references to specific implementation types. 

Structuring the Application 

Monolithic applications typically have a single entry point. In the case of an ASP.NET Core web 

application, the entry point will be the ASP.NET Core web project. However, that doesn’t mean the 

solution should consist of just a single project. It’s useful to break up the application into different 

layers in order to follow separation of concerns. Once broken up into layers, it’s helpful to go beyond 

folders to separate projects, which can help achieve better encapsulation. The best approach to 

achieve these goals with an ASP.NET Core application is a variation of the Clean Architecture 

discussed in chapter 5. Following this approach, the application’s solution will be comprised of 

separate libraries for the UI, Infrastructure, and ApplicationCore.  

In addition to these projects, separate test projects are included as well (Testing is discussed in 

Chapter 9). 

The application’s object model and interfaces should be placed in the ApplicationCore project. This 

project will have as few dependencies as possible, and the other projects in the solution will reference 

http://deviq.com/explicit-dependencies-principle/
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it. Business entities that need to be persisted are defined in the ApplicationCore project, as are 

services that do not directly depend on infrastructure. 

Implementation details, such as how persistence is performed or how notifications might be sent to a 

user, are kept in the Infrastructure project. This project will reference implementation-specific 

packages such as Entity Framework Core, but should not expose details about these implementations 

outside of the project. Infrastructure services and repositories should implement interfaces that are 

defined in the ApplicationCore project, and its persistence implementations are responsible for 

retrieving and storing entities defined in ApplicationCore. 

The ASP.NET Core project itself is responsible for any UI level concerns, but should not include 

business logic or infrastructure details. In fact, ideally it shouldn’t even have a dependency on the 

Infrastructure project, which will help ensure no dependency between the two projects is introduced 

accidentally. This can be achieved using a third-party DI container like StructureMap, which allows you 

to define DI rules in Registry classes in each project. 

Another approach to decoupling the application from implementation details is to have the 

application call microservices, perhaps deployed in individual Docker containers. This provides even 

greater separation of concerns and decoupling than leveraging DI between two projects, but has 

additional complexity. 

Feature Organization 

By default, ASP.NET Core applications organize their folder structure to include Controllers and Views, 

and frequently ViewModels. Client-side code to support these server-side structures is typically stored 

separately in the wwwroot folder. However, large applications may encounter problems with this 

organization, since working on any given feature often requires jumping between these folders. This 

gets more and more difficult as the number of files and subfolders in each folder grows, resulting in a 

great deal of scrolling through Solution Explorer. One solution to this problem is to organize 

application code by feature instead of by file type. This organizational style is typically referred to as 

feature folders or feature slices (see also: Vertical Slices). 

ASP.NET Core MVC supports Areas for this purpose. Using areas, you can create separate sets of 

Controllers and Views folders (as well as any associated models) in each Area folder. Figure 7-X shows 

an example folder structure, using Areas. 

http://bit.ly/2abpJ7t
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Figure 7-X Sample Area Organization 

When using Areas, you must use attributes to decorate your controllers with the name of the area to 

which they belong: 

[Area(“Catalog”)] 

public class HomeController 

{} 

You also need to add area support to your routes: 

 app.UseMvc(routes => 

{ 

  // Areas support 

  routes.MapRoute( 

    name: "areaRoute", 

    template: 

"{area:exists}/{controller=Home}/{action=Index}/{id?}"); 

  routes.MapRoute( 
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    name: "default", 

    template: "{controller=Home}/{action=Index}/{id?}"); 

}); 

In addition to the built-in support for Areas, you can also use your own folder structure, and 

conventions in place of attributes and custom routes. This would allow you to have feature folders 

that didn’t include separate folders for Views, Controllers, etc., keeping the hierarchy flatter and 

making it easier to see all related files in a single place for each feature. 

ASP.NET Core uses built-in convention types to control its behavior. You can modify or replace these 

conventions. For example, you can create a convention that will automatically get the feature name 

for a given controller based on its namespace (which typically correlates to the folder in which the 

controller is located): 

FeatureConvention : IControllerModelConvention 

{ 

  public void Apply(ControllerModel controller) 

  { 

    controller.Properties.Add("feature",  

      GetFeatureName(controller.ControllerType)); 

  } 

  private string GetFeatureName(TypeInfo controllerType) 

  { 

    string[] tokens = controllerType.FullName.Split('.'); 

    if (!tokens.Any(t => t == "Features")) return ""; 

    string featureName = tokens 

      .SkipWhile(t => !t.Equals("features", 

        StringComparison.CurrentCultureIgnoreCase)) 

      .Skip(1) 

      .Take(1) 
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      .FirstOrDefault(); 

    return featureName; 

  } 

} 

You then specify this convention as an option when you add support for MVC to your application in 

ConfigureServices: 

services.AddMvc(o => o.Conventions.Add(new FeatureConvention())); 

ASP.NET Core MVC also uses a convention to locate views. You can override it with a custom 

convention so that views will be located in your feature folders (using the feature name provided by 

the FeatureConvention, above). You can learn more about this approach and download a working 

sample from the MSDN article, Feature Slices for ASP.NET Core MVC. 

Cross-Cutting Concerns 

As applications grow, it becomes increasingly important to factor out cross-cutting concerns to 

eliminate duplication and maintain consistency. Some examples of cross-cutting concerns in ASP.NET 

Core applications are authentication, model validation rules, output caching, and error handling, 

though there are many others. ASP.NET Core MVC filters allow you to run code before or after certain 

steps in the request processing pipeline. For instance, a filter can run before and after model binding, 

before and after an action, or before and after an action’s result. You can also use an authorization 

filter to control access to the rest of the pipeline. Figures 7-X shows how request execution flows 

through filters, if configured. 

https://msdn.microsoft.com/en-us/magazine/mt763233.aspx
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters


 

 

52    Chapter 7 

    Developing ASP.NET Core MVC Apps 

 

 

Figure 7-X Request execution through filters and request pipeline. 

Filters are usually implemented as attributes, so you can apply them controllers or actions. When 

added in this fashion, filters specified at the action level override or build upon filters specified at the 

controller level, which themselves override global filters. For example, the [Route] attribute can be 

used to build up routes between controllers and actions. Likewise, authorization can be configured at 

the controller level, and then overridden by individual actions, as the following sample demonstrates: 

[Authorize] 

public class AccountController : Controller 

{ 

    [AllowAnonymous] 

    public async Task<IActionResult> Login() {} 

 

    public async Task<IActionResult> ForgotPassword() {} 



 

 

53    Chapter 7 

    Developing ASP.NET Core MVC Apps 

 

} 

The first method, Login, uses the AllowAnonymous filter (attribute) to override the Authorize filter set 

at the controller level. The ForgotPassword action (and any other action in the class that doesn’t have 

an AllowAnonymous attribute) will require an authenticated request. 

Filters can be used to eliminate duplication in the form of common error handling policies for APIs. 

For example, a typical API policy is to return a NotFound response to requests referencing keys that 

do not exist, and a BadRequest response if model validation fails. The following example 

demonstrates these two policies in action: 

[HttpPut("{id}")] 

  public async Task<IActionResult> Put(int id, [FromBody]Author 

author) 

  { 

    if ((await _authorRepository.ListAsync()).All(a => a.Id != 

id)) 

    { 

      return NotFound(id); 

    } 

    if (!ModelState.IsValid) 

    { 

       return BadRequest(ModelState); 

    } 

    author.Id = id; 

    await _authorRepository.UpdateAsync(author); 

    return Ok(); 

  } 

Don’t allow your action methods to become cluttered with conditional code like this. Instead, pull the 

policies into filters that can be applied on an as-needed basis. In this example, the model validation 

check, which should occur any time a command is sent to the API, can be replaced by the following 

attribute: 
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public class ValidateModelAttribute : ActionFilterAttribute 

{ 

  public override void OnActionExecuting(ActionExecutingContext 

context) 

    { 

    if (!context.ModelState.IsValid) 

    { 

      context.Result = new 

BadRequestObjectResult(context.ModelState); 

    } 

  } 

} 

Likewise, a filter can be used to check if a record exists and return a 404 before the action is executed, 

eliminating the need to perform these checks in the action. Once you’ve pulled out common 

conventions and organized your solution to separate infrastructure code and business logic from your 

UI, your MVC action methods should be extremely thin: 

  // PUT api/authors2/5 

  [HttpPut("{id}")] 

  [ValidateAuthorExists] 

  public async Task<IActionResult> Put(int id, [FromBody]Author 

author) 

  { 

    await _authorRepository.UpdateAsync(author); 

    return Ok(); 

  } 

You can read more about implementing filters and download a working sample from the MSDN 

article, Real World ASP.NET Core MVC Filters. 

https://msdn.microsoft.com/en-us/magazine/mt767699.aspx
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References – Structuring Applications 

Areas 

https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/areas  

MSDN – Feature Slices for ASP.NET Core MVC 

https://msdn.microsoft.com/en-us/magazine/mt763233.aspx 

Filters 

https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters 

MSDN – Real World ASP.NET Core MVC Filters 

https://msdn.microsoft.com/en-us/magazine/mt767699.aspx 

 

Security 

Securing web applications is a large topic, with many considerations. At its most basic level, security 

involves ensuring you know who a given request is coming from, and then ensuring that that request 

only has access to resources it should. Authentication is the process of comparing credentials 

provided with a request to those in a trusted data store, to see if the request should be treated as 

coming from a known entity. Authorization is the process of restricting access to certain resources 

based on user identity. A third security concern is protecting requests from eavesdropping by third 

parties, for which you should at least ensure that SSL is used by your application. 

Authentication 

ASP.NET Core Identity is a membership system you can use to support login functionality for your 

application. It has support for local user accounts as well as external login provider support from 

providers like Microsoft Account, Twitter, Facebook, Google, and more. In addition to ASP.NET Core 

Identity, your application can use windows authentication, or a third-party identity provider like 

Identity Server. 

ASP.NET Core Identity is included in new project templates if the Individual User Accounts option is 

selected. This template includes support for registration, login, external logins, forgotten passwords, 

and additional functionality.  

https://msdn.microsoft.com/en-us/magazine/mt763233.aspx
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-us/aspnet/core/security/enforcing-ssl
https://github.com/IdentityServer/IdentityServer4
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Figure 7-X Select Individual User Accounts to have Identity preconfigured. 

Identity support is configured in Startup, both in ConfigureServices and Configure: 

public void ConfigureServices(IServiceCollection services) 

{ 

    // Add framework services. 

    services.AddDbContext<ApplicationDbContext>(options => 

        

options.UseSqlServer(Configuration.GetConnectionString("DefaultCon

nection"))); 

 

    services.AddIdentity<ApplicationUser, IdentityRole>() 

        .AddEntityFrameworkStores<ApplicationDbContext>() 

        .AddDefaultTokenProviders(); 
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    services.AddMvc(); 

} 

public void Configure(IApplicationBuilder app) 

{ 

    app.UseStaticFiles(); 

 

    app.UseIdentity(); 

 

    app.UseMvc(routes => 

    { 

        routes.MapRoute( 

            name: "default", 

            template: "{controller=Home}/{action=Index}/{id?}"); 

    }); 

} 

It’s important that UseIdentity appear before UseMvc in the Configure method. When configuring 

Identity in ConfigureServices, you’ll notice a call to AddDefaultTokenProviders. This has nothing to do 

with tokens that may be used to secure web communications, but instead refers to providers that 

create prompts that can be sent to users via SMS or email in order for them to confirm their identity. 

You can learn more about configuring two-factor authentication and enabling external login providers 

from the official ASP.NET Core docs. 

Authorization 

The simplest form of authorization involves restricting access to anonymous users. This can be 

achieved by simply applying the [Authorize] attribute to certain controllers or actions. If roles are 

being used, the attribute can be further extended to restrict access to users who belong to certain 

roles, as shown: 

[Authorize(Roles = "HRManager,Finance")] 

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/2fa
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/
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public class SalaryController : Controller 

{ 

} 

In this case, users belonging to either the HRManager or Finance roles (or both) would have access to 

the SalaryController. To require that a user belong to multiple roles (not just one of several), you can 

apply the attribute multiple times, specifying a required role each time. 

Specifying certain sets of roles as strings in many different controllers and actions can lead to 

undesirable repetition. You can configure authorization policies, which encapsulate authorization 

rules, and then specify the policy instead of individual roles when applying the [Authorize] attribute: 

[Authorize(Policy = "CanViewPrivateReport")] 

public IActionResult ExecutiveSalaryReport() 

{ 

    return View(); 

} 

Using policies in this way, you can separate the kinds of actions being restricted from the specific roles 

or rules that apply to it. Later, if you create a new role that needs to have access to certain resources, 

you can just update a policy, rather than updating every list of roles on every [Authorize] attribute. 

Claims 

Claims are name value pairs that represent properties of an authenticated user. For example, you 

might store users’ employee number as a claim. Claims can then be used as part of authorization 

policies. You could create a policy called “EmployeeOnly” that requires the existence of a claim called 

“EmployeeNumber”, as shown in this example: 

public void ConfigureServices(IServiceCollection services) 

{ 

    services.AddMvc(); 

 

    services.AddAuthorization(options => 

    { 
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        options.AddPolicy("EmployeeOnly", policy => 

policy.RequireClaim("EmployeeNumber")); 

    }); 

} 

This policy could then be used with the [Authorize] attribute to protect any controller and/or action, 

as described above. 
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Securing Web APIs 

Most web APIs should implement a token-based authentication system. Token authentication is 

stateless and designed to be scalable. In a token-based authentication system, the client must first 

authenticate with the authentication provider. If successful, the client is issued a token, which is simply 

a cryptographically meaningful string of characters. When the client then needs to issue a request to 

an API, it adds this token as a header on the request. The server then validates the token found in the 

request header before completing the request. Figure 7-X demonstrates this process. 

 

Figure 7-X. Token-based authentication for Web APIs. 

 

 

References – Security  

Security Docs Overview 

https://docs.microsoft.com/en-us/aspnet/core/security/  

Enforcing SSL in an ASP.NET Core App 

https://docs.microsoft.com/en-us/aspnet/core/security/enforcing-ssl 

Introduction to Identity 

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity 

Introduction to Authorization 

https://docs.microsoft.com/en-us/aspnet/core/security/authorization/introduction 

Authentication and Authorization for API Apps in Azure App Service 
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https://docs.microsoft.com/en-us/azure/app-service-api/app-service-api-authentication
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Client Communication 

In addition to serving pages and responding to requests for data via web APIs, ASP.NET Core apps can 

communicate directly with connected clients. This outbound communication can use a variety of 

transport technologies, the most common being WebSockets. ASP.NET Core SignalR is a library that 

makes it simple to kind of real-time server-to-client communication functionality to your applications. 

SignalR supports a variety of transport technologies, including WebSockets, and abstracts away many 

of the implementation details from the developer.  

ASP.NET Core SignalR is currently under development, and will be available in the next release of 

ASP.NET Core. However, other open source WebSockets libraries are currently available. 

Real-time client communication, whether using WebSockets directly or other techniques, are useful in 

a variety of application scenarios. Some examples include: 

 Live chat room applications 

 Monitoring applications 

 Job progress updates 

 Notifications 

 Interactive forms applications 

When building client communication into your applications, there are typically two components: 

 Server-side connection manager (SignalR Hub, WebSocketManager WebSocketHandler) 

 Client-side library 

Clients are not limited to browsers – mobile apps, console apps, and other native apps can also 

communicate using SignalR/WebSockets. The following simple program echoes all content sent to a 

chat application to the console, as part of a WebSocketManager sample application: 

public class Program 

{ 

private static Connection _connection; 

public static void Main(string[] args) 

{ 

    StartConnectionAsync(); 

 

    _connection.On("receiveMessage", (arguments) => 

    { 

        Console.WriteLine($"{arguments[0]} said: {arguments[1]}"); 

https://github.com/radu-matei/websocket-manager
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    }); 

 

    Console.ReadLine(); 

    StopConnectionAsync(); 

} 

 

public static async Task StartConnectionAsync() 

{ 

    _connection = new Connection(); 

    await 

_connection.StartConnectionAsync("ws://localhost:65110/chat"); 

} 

 

public static async Task StopConnectionAsync() 

{ 

    await _connection.StopConnectionAsync(); 

} 

Consider ways in which your applications communicate directly with client applications, and consider 

whether real-time communication would improve your app’s user experience. 

References – Client Communication  

ASP.NET Core SignalR 
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Domain-Driven Design – Should You Apply It? 

Domain-Driven Design (DDD) is an agile approach to building software that emphasizes focusing on 

the business domain. It places a heavy emphasis on communication and interaction with business 

domain expert(s) who can relate to the developers how the real-world system works. For example, if 

you’re building a system that handles stock trades, your domain expert might be an experienced stock 

broker. DDD is designed to address large, complex business problems, and is often not appropriate 

for smaller, simpler applications, as the investment in understanding and modeling the domain is not 

worth it. 

When building software following a DDD approach, your team (including non-technical stakeholders 

and contributors) should develop a ubiquitous language for the problem space. That is, the same 

terminology should be used for the real-world concept being modeled, the software equivalent, and 

any structures that might exist to persist the concept (e.g. database tables). Thus, the concepts 

described in the ubiquitous language should form the basis for your domain model. 

Your domain model is comprised of objects that interact with one another to represent the behavior 

of the system. These objects may fall into the following categories: 

 Entities, which represent objects with a thread of identity. Entities are typically stored in 

persistence with a key by which they can later be retrieved. 

 Aggregates, which represent groups of objects that should be persisted as a unit. 

 Value objects, which represent concepts that can be compared on the basis of the sum of 

their property values. For example, DateRange consisting of a start and end date. 

 Domain events, which represent things happening within the system that are of interest to 

other parts of the system. 

Note that a DDD domain model should encapsulate complex behavior within the model. Entities, in 

particular, should not merely be collections of properties. When the domain model lacks behavior and 

merely represents the state of the system, it is said to be an anemic model, which is undesirable in 

DDD.  

In addition to these model types, DDD typically employs a variety of patterns: 

 Repository, for abstracting persistence details. 

 Factory, for encapsulating complex object creation. 

 Domain events, for decoupling dependent behavior from triggering behavior. 

 Services, for encapsulating complex behavior and/or infrastructure implementation details. 

 Command, for decoupling issuing commands and executing the command itself. 

 Specification, for encapsulating query details. 

DDD also recommends the use of the Clean Architecture discussed previously, allowing for loose 

coupling, encapsulation, and code that can easily be verified using unit tests. 

When Should You Apply DDD 

DDD is well-suited to large applications with significant business (not just technical) complexity. The 

application should require the knowledge of domain experts. There should be significant behavior in 

the domain model itself, representing business rules and interactions beyond simply storing and 

retrieving the current state of various records from data stores. 

http://deviq.com/entity/
http://deviq.com/aggregate-pattern/
http://deviq.com/value-object/
https://martinfowler.com/eaaDev/DomainEvent.html
http://deviq.com/anemic-model/
http://deviq.com/repository-pattern/
https://en.wikipedia.org/wiki/Factory_method_pattern
http://gorodinski.com/blog/2012/04/14/services-in-domain-driven-design-ddd/
https://en.wikipedia.org/wiki/Command_pattern
http://deviq.com/specification-pattern/
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When Shouldn’t You Apply DDD 

DDD involves investments in modeling, architecture, and communication that may not be warranted 

for smaller applications or applications that are essentially just CRUD (create/read/update/delete). If 

you choose to approach your application following DDD, but find that your domain has an anemic 

model with no behavior, you may need to rethink your approach. Either your application may not 

need DDD, or you may need assistance refactoring your application to encapsulate business logic in 

the domain model, rather than in your database or user interface. 

A hybrid approach would be to only use DDD for the transactional or more complex areas of the 

application, but not for simpler CRUD or read-only portions of the application. For instance, you 

needn’t have the constraints of an Aggregate if you’re querying data to display a report or to visualize 

data for a dashboard. It’s perfectly acceptable to have a separate, simpler read model for such 

requirements. 

 

References – Domain-Driven Design  
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Deployment 

There are a few steps involved in the process of deploying your ASP.NET Core application, regardless 

of where it will be hosted. The first step is to publish the application, which can be done using the 

dotnet publish CLI command. This will compile the application and place all of the files needed 

to run the application into a designated folder. When you deploy from Visual Studio, this step is 

performed for you automatically. The publish folder contains .exe and .dll files for the application and 

its dependencies. A self-contained application will also include a version of the .NET runtime. ASP.NET 

Core applications will also include configuration files, static client assets, and MVC views. 

ASP.NET Core applications are console applications that must be started when the server boots and 

restarted if the application (or server) crashes. A process manager can be used to automate this 

process. The most common process managers for ASP.NET Core are Nginx and Apache on Linux and 

IIS or Windows Service on Windows. 

In addition to a process manager, ASP.NET Core applications hosted in the Kestrel web server must 

use a reverse proxy server. A reverse proxy server receives HTTP requests from the internet and 

forwards them to Kestrel after some preliminary handling. Reverse proxy servers provide a layer of 

security for the application, and are required for edge deployments (exposed to traffic from the 

Internet). Kestrel is relatively new and does not yet offer defenses against certain attacks. Kestrel also 

doesn’t support hosting multiple applications on the same port, so techniques like host headers 

cannot be used with it to enable hosting multiple applications on the same port and IP address. 

 

 

Figure 7-X ASP.NET hosted in Kestrel behind a reverse proxy server 

 

Another scenario in which a reverse proxy can be helpful is to secure multiple applications using 

SSL/HTTPS. In this case, only the reverse proxy would need to have SSL configured. Communication 

between the reverse proxy server and Kestrel could take place over HTTP, as shown in Figure 7-X. 

 

Figure 7-X ASP.NET hosted behind an HTTPS-secured reverse proxy server 

An increasingly popular approach is to host your ASP.NET Core application in a Docker container, 

which then can be hosted locally or deployed to Azure for cloud-based hosting. The Docker container 

could contain your application code, running on Kestrel, and would be deployed behind a reverse 

proxy server, as shown above. 
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If you’re hosting your application on Azure, you can use Microsoft Azure Application Gateway as a 

dedicated virtual appliance to provide several services. In addition to acting as a reverse proxy for 

individual applications, Application Gateway can also offer the following features: 

 HTTP load balancing 

 SSL offload (SSL only to Internet) 

 End to End SSL 

 Multi-site routing (consolidate up to 20 sites on a single Application Gateway) 

 Web application firewall 

 Websocket support 

 Advanced diagnostics 

Learn more about Azure deployment options in Chapter 10. 
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 Working with 
Data in ASP.NET 
Core Apps 

“Data is a precious thing and will last longer than the systems themselves.” 

Tim Berners-Lee 

 

Summary 

Data access is an important part of almost any software application. ASP.NET Core supports a variety 

of data access options, including Entity Framework Core (and Entity Framework 6 as well), and can 

work with any .NET data access framework. The choice of which data access framework to use 

depends on the application’s needs. Abstracting these choices from the ApplicationCore and UI 

projects, and encapsulating implementation details in Infrastructure, helps to produce loosely 

coupled, testable software. 

Entity Framework Core (for relational databases) 

If you’re writing a new ASP.NET Core application that needs to work with relational data, then Entity 

Framework Core (EF Core) is the recommended way for your application to access its data. EF Core is 

an object-relational mapper (O/RM) that enables .NET developers to persist objects to and from a 

data source. It eliminates the need for most of the data access code developers would typically need 

to write. Like ASP.NET Core, EF Core has been rewritten from the ground up to support modular 

cross-platform applications. You add it to your application as a NuGet package, configure it in Startup, 

and request it through dependency injection wherever you need it. 

To use EF Core with a SQL Server database, run the following dotnet CLI command: 

dotnet add package Microsoft.EntityFrameworkCore.SqlServer 
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To add support for an InMemory data source, for testing: 

dotnet add package Microsoft.EntityFrameworkCore.InMemory 

The DbContext 

To work with EF Core, you need a subclass of DbContext. This class holds properties representing 

collections of the entities your application will work with. The eShopOnWeb sample includes a 

CatalogContext with collections for items, brands, and types: 

 public class CatalogContext : DbContext 

{ 

    public CatalogContext(DbContextOptions<CatalogContext> 

options) : base(options) 

    { 

    } 

    public DbSet<CatalogItem> CatalogItems { get; set; } 

    public DbSet<CatalogBrand> CatalogBrands { get; set; } 

    public DbSet<CatalogType> CatalogTypes { get; set; } 

} 

Your DbContext must have a constructor that accepts DbContextOptions and pass this 

argument to the base DbContext constructor. Note that if you have only one DbContext in your 

application, you can pass an instance of DbContextOptions, but if you have more than one you 

must use the generic DbContextOptions<T> type, passing in your DbContext type as the generic 

parameter. 

Configuring EF Core 

In your ASP.NET Core application, you’ll typically configure EF Core in your ConfigureServices 

method. EF Core uses a DbContextOptionsBuilder, which supports several helpful extension 

methods to streamline its configuration. Tp configure CatalogContext to use a SQL Server 

database with a connection string defined in Configuration, you would add the following code to 

ConfigureServices: 

services.AddDbContext<CatalogContext>(options => 

options.UseSqlServer(Configuration.GetConnectionString("DefaultCon

nection"))); 

To use the in-memory database: 
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services.AddDbContext<CatalogContext>(options => 

    options.UseInMemoryDatabase()); 

Once you have installed EF Core, created a DbContext child type, and configured it in 

ConfigureServices, you are ready to use EF Core. You can request an instance of your DbContext type 

in any service that needs it, and start working with your persisted entities using LINQ as if they were 

simply in a collection. EF Core does the work of translating your LINQ expressions into SQL queries to 

store and retrieve your data. 

You can see the queries EF Core is executing by configuring a logger and ensuring its level is set to at 

least Information, as shown in Figure 8-X. 

 

Figure 8-1 Logging EF Core queries to the console 

Fetching and Storing Data 

To retrieve data from EF Core, you access the appropriate property and use LINQ to filter the result. 

You can also use LINQ to perform projection, transforming the result from one type to another. The 

following example would retrieve CatalogBrands, ordered by name, filtered by their Enabled property, 

and projected onto a SelectListItem type: 

var brandItems = await _context.CatalogBrands 

    .Where(b => b.Enabled) 

    .OrderBy(b => b.Name) 
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    .Select(b => new SelectListItem {  

Value = b.Id, Text = b.Name }) 

    .ToListAsync(); 

It’s important in the above example to add the call to ToListAsync in order to execute the query 

immediately. Otherwise, the statement will assign an IQueryable<SelectListItem> to 

brandItems, which will not be executed until it is enumerated. There are pros and cons to returning 

IQueryable results from methods. It allows the query EF Core will construct to be further modified, 

but can also result in errors that only occur at runtime, if operations are added to the query that EF 

Core cannot translate. It’s generally safer to pass any filters into the method performing the data 

access, and return back an in-memory collection (e.g. List<T>) as the result. 

EF Core tracks changes on entities it fetches from persistence. To save changes to a tracked entity, you 

just call the SaveChanges method on the DbContext, making sure it’s the same DbContext instance 

that was used to fetch the entity. Adding and removing entities is directly on the appropriate DbSet 

property, again with a call to SaveChanges to execute the database commands. The following 

example demonstrates adding, updating, and removing entities from persistence. 

// create 

var newBrand = new CatalogBrand() { Brand = "Acme" }; 

_context.Add(newBrand); 

await _context.SaveChangesAsync(); 

 

// read and update 

var existingBrand = _context.CatalogBrands.Find(1); 

existingBrand.Brand = "Updated Brand"; 

await _context.SaveChangesAsync(); 

 

// read and delete (alternate Find syntax) 

var brandToDelete = _context.Find<CatalogBrand>(2); 

_context.CatalogBrands.Remove(brandToDelete); 

await _context.SaveChangesAsync(); 
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EF Core supports both synchronous and async methods for fetching and saving. In web applications, 

it’s recommended to use the async/await pattern with the async methods, so that web server threads 

are not blocked while waiting for data access operations to complete. 

Fetching Related Data 

When EF Core retrieves entities, it populates all of the properties that are stored directly with that 

entity in the database. Navigation properties, such as lists of related entities, are not populated and 

may have their value set to null. This ensures EF Core is not fetching more data than is needed, which 

is especially important for web applications, which must quickly process requests and return 

responses in an efficient manner. To include relationships with an entity using eager loading, you 

specify the property using the Include extension method on the query, as shown: 

// .Include requires using Microsoft.EntityFrameworkCore 

var brandsWithItems = await _context.CatalogBrands 

    .Include(b => b.Items) 

    .ToListAsync(); 

You can include multiple relationships, and you can also include sub-relationships using 

ThenInclude. EF Core will execute a single query to retrieve the resulting set of entities. 

Another option for loading related data is to use explicit loading. Explicit loading allows you to load 

additional data into an entity that has already been retrieved. Since this involves a separate request to 

the database, it’s not recommended for web applications, which should minimize the number of 

database round trips made per request. 

Lazy loading is a feature that automatically loads related data as it is referenced by the application. It’s 

not currently supported by EF Core, but as with explicit loading it should typically be disabled for web 

applications. 

Resilient Connections 

External resources like SQL databases may occasionally be unavailable. In cases of temporary 

unavailability, applications can use retry logic to avoid raising an exception. This technique is 

commonly referred to as connection resiliency. You can implement your own retry with exponential 

backoff technique by attempting to rety with an exponentially increasing wait time, until a maximum 

retry count has been reached. This technique embraces the fact that cloud resources might 

intermittently be unavailable for short periods of time, resulting in failure of some requests. 

For Azure SQL DB, Entity Framework Core already provides internal database connection resiliency 

and retry logic. But you need to enable the Entity Framework execution strategy for each DbContext 

connection if you want to have resilient EF Core connections. 

For instance, the following code at the EF Core connection level enables resilient SQL connections that 

are retried if the connection fails. 

https://docs.microsoft.com/en-us/azure/architecture/patterns/retry
https://docs.microsoft.com/en-us/azure/architecture/patterns/retry
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// Startup.cs from any ASP.NET Core Web API  
public class Startup  
{  
  public IServiceProvider ConfigureServices(IServiceCollection services)  
  {  
    //...  
    services.AddDbContext<OrderingContext>(options =>  
    {  
      options.UseSqlServer(Configuration["ConnectionString"],  
      sqlServerOptionsAction: sqlOptions =>  
      {  
        sqlOptions.EnableRetryOnFailure(  
        maxRetryCount: 5,  
        maxRetryDelay: TimeSpan.FromSeconds(30),  
        errorNumbersToAdd: null);  
      });  
    });  
  }  
//...  
 

Execution strategies and explicit transactions using BeginTransaction and multiple 
DbContexts  

When retries are enabled in EF Core connections, each operation you perform using EF Core 

becomes its own retriable operation. Each query and each call to SaveChanges will be retried as 

a unit if a transient failure occurs.  

However, if your code initiates a transaction using BeginTransaction, you are defining your 

own group of operations that need to be treated as a unit—everything inside the transaction 

has be rolled back if a failure occurs. You will see an exception like the following if you attempt 

to execute that transaction when using an EF execution strategy (retry policy) and you include 

several SaveChanges from multiple DbContexts in it. 

System.InvalidOperationException: The configured execution strategy 

'SqlServerRetryingExecutionStrategy' does not support user initiated 

transactions. Use the execution strategy returned by 

'DbContext.Database.CreateExecutionStrategy()' to execute all the operations in 

the transaction as a retriable unit.  

 

The solution is to manually invoke the EF execution strategy with a delegate representing everything 

that needs to be executed. If a transient failure occurs, the execution strategy will invoke the delegate 

again. The following code shows how to implement this approach: 

// Use of an EF Core resiliency strategy when using multiple DbContexts  
// within an explicit transaction  
// See:  
// https://docs.microsoft.com/en-us/ef/core/miscellaneous/connection-resiliency  
var strategy = _catalogContext.Database.CreateExecutionStrategy();  
await strategy.ExecuteAsync(async () =>  
{  
// Achieving atomicity between original Catalog database operation and the  
// IntegrationEventLog thanks to a local transaction  
using (var transaction = _catalogContext.Database.BeginTransaction())  
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{  
_catalogContext.CatalogItems.Update(catalogItem);  
await _catalogContext.SaveChangesAsync();  
// Save to EventLog only if product price changed  
if (raiseProductPriceChangedEvent)  
await _integrationEventLogService.SaveEventAsync(priceChangedEvent);  
transaction.Commit();  
}  
});  

The first DbContext is the _catalogContext and the second DbContext is within the 

_integrationEventLogService object. Finally, the Commit action would be performed multiple 

DbContexts and using an EF Execution Strategy. 

References – Entity Framework Core  

EF Core Docs 

https://docs.microsoft.com/en-us/ef/ 

EF Core: Related Data 

https://docs.microsoft.com/en-us/ef/core/querying/related-data 

Avoid Lazy Loading Entities in ASPNET Applications 

http://ardalis.com/avoid-lazy-loading-entities-in-asp-net-applications  

 

EF Core or micro-ORM? 

While EF Core is a great choice for managing persistence, and for the most part encapsulates 

database details from application developers, it is not the only choice. Another popular open source 

alternative is Dapper, a so-called micro-ORM. A micro-ORM is a lightweight, less full-featured tool for 

mapping objects to data structures. In the case of Dapper, its design goals focus on performance, 

rather than fully encapsulating the underlying queries it uses to retrieve and update data. Because it 

doesn’t abstract SQL from the developer, Dapper is “closer to the metal” and lets developers write the 

exact queries they want to use for a given data access operation. 

EF Core has two significant features it provides which separate it from Dapper but also add to its 

performance overhead. The first is translation from LINQ expressions into SQL. These translations are 

cached, but even so there is overhead in performing them the first time. The second is change 

tracking on entities (so that efficient update statements can be generated). This behavior can be 

turned off for specific queries by using the AsNotTracking extension. EF Core also generates SQL 

queries that usually are very efficient and in any case perfectly acceptable from a performance 

standpoint, but if you need fine control over the precise query to be executed, you can pass in custom 

SQL (or execute a stored procedure) using EF Core, too. In this case, Dapper still outperforms EF Core, 

but only slightly. Julie Lerman presents some performance data in her May 2016 MSDN article Dapper, 

Entity Framework, and Hybrid Apps. Additional performance benchmark data for a variety of data 

access methods can be found on the Dapper site. 

To see how the syntax for Dapper varies from EF Core, consider these two versions of the same 

method for retrieving a list of items: 

// EF Core 

https://docs.microsoft.com/en-us/ef/
https://docs.microsoft.com/en-us/ef/core/querying/related-data
https://github.com/StackExchange/Dapper
https://msdn.microsoft.com/en-us/magazine/mt703432.aspx
https://msdn.microsoft.com/en-us/magazine/mt703432.aspx
https://github.com/StackExchange/Dapper


 

 

74    Chapter 8 

    Working with Data 

 

private readonly CatalogContext _context; 

public async Task<IEnumerable<CatalogType>> GetCatalogTypes() 

{ 

    return await _context.CatalogTypes.ToListAsync(); 

} 

 

// Dapper 

private readonly SqlConnection _conn; 

public async Task<IEnumerable<CatalogType>> 

GetCatalogTypesWithDapper() 

{ 

    return await _conn.QueryAsync<CatalogType>("SELECT * FROM 

CatalogType"); 

} 

If you need to build more complex object graphs with Dapper, you need to write the associated 

queries yourself (as opposed to adding an Include as you would in EF Core). This is supported 

through a variety of syntaxes, including a feature called Multi Mapping that lets you map individual 

rows to multiple mapped objects. For example, given a class Post with a property Owner of type User, 

the following SQL would return all of the necessary data: 

select * from #Posts p  

left join #Users u on u.Id = p.OwnerId  

Order by p.Id 

Each returned row includes both User and Post data. Since the User data should be attached to the 

Post data via its Owner property, the following function is used: 

(post, user) => { post.Owner = user; return post; } 

The full code listing to return a collection of posts with their Owner property populated with the 

associated user data would be: 

var sql = @"select * from #Posts p  
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left join #Users u on u.Id = p.OwnerId  

Order by p.Id"; 

var data = connection.Query<Post, User, Post>(sql,  

  (post, user) => { post.Owner = user; return post;}); 

Because it offers less encapsulation, Dapper requires developers know more about how their data is 

stored, how to query it efficiently, and write more code to fetch it. When the model changes, instead 

of simply creating a new migration (another EF Core feature), and/or updating mapping information 

in one place in a DbContext, every query that is impacted must be updated. These queries have not 

compile time guarantees, so they may break at runtime in response to changes to the model or 

database, making errors more difficult to detect quickly. In exchange for these tradeoffs, Dapper 

offers extremely fast performance. 

For most applications, and most parts of almost all applications, EF Core offers acceptable 

performance. Thus, its developer productivity benefits are likely to outweigh its performance 

overhead. For queries that can benefit from caching, the actual query may only be executed a tiny 

percentage of the time, making relatively small query performance differences moot. 

SQL or NoSQL 

Traditionally, relational databases like SQL Server have dominated the marketplace for persistent data 

storage, but they are not the only solution available. NoSQL databases like MongoDB offer a different 

approach to storing objects. Rather than mapping objects to tables and rows, another option is to 

serialize the entire object graph, and store the result. The benefits of this approach, at least initially, 

are simplicity and performance. It’s certainly simpler to store a single serialized object with a key than 

to decompose the object into many tables with relationships and update and rows that may have 

changed since the object was last retrieved from the database. Likewise, fetching and deserializing a 

single object from a key-based store is typically much faster and easier than complex joins or multiple 

database queries required to fully compose the same object from a relational database. The lack of 

locks or transactions or a fixed schema also makes NoSQL databases very amenable to scaling across 

many machines, supporting very large datasets. 

On the other hand, NoSQL databases (as they are typically called) have their drawbacks. Relational 

databases use normalization to enforce consistency and avoid duplication of data. This reduces the 

total size of the database and ensures that updates to shared data are available immediately 

throughout the database. In a relational database, an Address table might reference a Country table 

by ID, such that if a country’s name were changed, the address records would benefit from the update 

without themselves having to be updated. However, in a NoSQL database, Address and its associated 

Country might be serialized as part of many stored objects. An update to a country name would 

require all such objects to be updated, rather than a single row. Relational databases can also ensure 

relational integrity by enforcing rules like foreign keys. NoSQL databases typically do not offer such 

constraints on their data. 

Another complexity NoSQL databases must deal with is versioning. When an object’s properties 

change, it may not be able to be deserialized from past versions that were stored. Thus, all existing 

https://www.mongodb.com/what-is-mongodb


 

 

76    Chapter 8 

    Working with Data 

 

objects that have a serialized (previous) version of the object must be updated to conform to its new 

schema. This is not conceptually different from a relational database, where schema changes 

sometimes require update scripts or mapping updates. However, the number of entries that must be 

modified is often much greater in the NoSQL approach, because there is more duplication of data. 

It’s possible in NoSQL databases to store multiple versions of objects, something fixed schema 

relational databases typically do not support. However, in this case your application code will need to 

account for the existence of previous versions of objects, adding additional complexity. 

NoSQL databases typically do not enforce ACID, which means they have both performance and 

scalability benefits over relational databases. They’re well-suited to extremely large datasets and 

objects that are not well-suited to storage in normalized table structures. There is no reason why a 

single application cannot take advantage of both relational and NoSQL databases, using each where it 

is best suited. 

Azure DocumentDB 

Azure DocumentDB is a fully managed NoSQL database service that offers cloud-based schema-free 

data storage. DocumentDB is built for fast and predictable performance, high availability, elastic 

scaling, and global distribution. Despite being a NoSQL database, developers can use rich and familiar 

SQL query capabilities on JSON data. All resources in DocumentDB are stored as JSON documents. 

Resources are managed as items, which are documents containing metadata, and feeds, which are 

collections of items. Figure 8-X shows the relationship between different DocumentDB resources. 

 

http://en.wikipedia.org/wiki/ACID
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Figure 8-X. DocumentDB resource organization. 

The DocumentDB query language is a simple yet powerful interface for querying JSON documents. 

The language supports a subset of ANSI SQL grammar and adds deep integration of JavaScript object, 

arrays, object construction, and function invocation. 

References – DocumentDB 

 DocumentDB Introduction 

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-introduction  

Other Persistence Options 

In addition to relational and NoSQL storage options, ASP.NET Core applications can use Azure 

Storage to store a variety of data formats and files in a cloud-based, scalable fashion. Azure Storage is 

massively scalable, so you can start out storing small amounts of data and scale up to storing 

hundreds or terabytes if your application requires it. Azure Storage supports four kinds of data: 

 Blob Storage for unstructured text or binary storage, also referred to as object storage. 

 Table Storage for structured datasets, accessible via row keys. 

 Queue Storage for reliable queue-based messaging. 

 File Storage for shared file access between Azure virtual machines and on-premises 

applications. 

References – Azure Storage 

 Azure Storage Introduction 

https://docs.microsoft.com/en-us/azure/storage/storage-introduction  

Caching 

In web applications, each web request should be completed in the shortest time possible. One way to 

achieve this is to limit the number of external calls the server must make to complete the request. 

Caching involves storing a copy of data on the server (or another data store that is more easily 

queried than the source of the data). Web applications, and especially non-SPA traditional web 

applications, need to build the entire user interface with every request. This frequently involves 

making many of the same database queries repeatedly from one user request to the next. In most 

cases, this data changes rarely, so there is little reason to constantly request it from the database. 

ASP.NET Core supports response caching, for caching entire pages, and data caching, which supports 

more granular caching behavior. 

When implementing caching, it’s important to keep in mind separation of concerns. Avoid 

implementing caching logic in your data access logic, or in your user interface. Instead, encapsulate 

caching in its own classes, and use configuration to manage its behavior. This follows the 

Open/Closed and Single Responsibility principles, and will make it easier for you to manage how you 

use caching in your application as it grows. 

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-introduction
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
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ASP.NET Core Response Caching 

ASP.NET Core supports two levels of response caching. The first level does not cache anything on the 

server, but adds HTTP headers that instruct clients and proxy servers to cache responses. This is 

implemented by adding the ResponseCache attribute to individual controllers or actions: 

[ResponseCache(Duration = 60)] 

public IActionResult Contact() 

{ } 

    ViewData["Message"] = "Your contact page."; 

    return View(); 

} 

The above example will result in the following header being added to the response, instructing clients 

to cache the result for up to 60 seconds. 

Cache-Control: public,max-age=60 

In order to add server-side in-memory caching to the application, you must reference the 

Microsoft.AspNetCore.ResponseCaching NuGet package, and then add the Response Caching 

middleware. This middleware is configured in both ConfigureServices and Configure in 

Startup: 

public void ConfigureServices(IServiceCollection services) 

{ 

    services.AddResponseCaching(); 

} 

public void Configure(IApplicationBuilder app) 

{ 

    app.UseResponseCaching(); 

} 

The Response Caching Middleware will automatically cache responses based on a set of conditions, 

which you can customize. By default, only 200 (OK) responses requested via GET or HEAD methods 

are cached. In addition, requests must have a response with a Cache-Control: public header, and 

cannot include headers for Authorization or Set-Cookie. See a complete list of the caching conditions 

used by the response caching middleware. 

https://docs.microsoft.com/en-us/aspnet/core/performance/caching/middleware#conditions-for-caching
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/middleware#conditions-for-caching
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Data Caching 

Rather than (or in addition to) caching full web responses, you can cache the results of individual data 

queries. For this, you can use in memory caching on the web server, or use a distributed cache. This 

section will demonstrate how to implement in memory caching. 

You add support for memory (or distributed) caching in ConfigureServices: 

public void ConfigureServices(IServiceCollection services) 

{ 

    services.AddMemoryCache(); 

    services.AddMvc(); 

} 

Be sure to add the Microsoft.Extensions.Caching.Memory NuGet package as well. 

Once you’ve added the service, you request IMemoryCache via dependency injection wherever you 

need to access the cache. In this example, the CachedCatalogService is using the Proxy (or 

Decorator) design pattern, by providing an alternative implementation of ICatalogService that 

controls access to (or adds behavior to) the underlying CatalogService implementation. 

public class CachedCatalogService : ICatalogService 

{ 

    private readonly IMemoryCache _cache; 

    private readonly CatalogService _catalogService; 

    private static readonly string _brandsKey = "brands"; 

    private static readonly string _typesKey = "types"; 

    private static readonly string _itemsKeyTemplate = "items-{0}-

{1}-{2}-{3}"; 

    private static readonly TimeSpan _defaultCacheDuration = 

TimeSpan.FromSeconds(30); 

 

    public CachedCatalogService(IMemoryCache cache, 

https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed
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        CatalogService catalogService) 

    { 

        _cache = cache; 

        _catalogService = catalogService; 

    } 

 

    public async Task<IEnumerable<SelectListItem>> GetBrands() 

    { 

        return await _cache.GetOrCreateAsync(_brandsKey, async 

entry => 

                { 

                    entry.SlidingExpiration = 

_defaultCacheDuration; 

                    return await _catalogService.GetBrands(); 

                }); 

    } 

 

    public async Task<Catalog> GetCatalogItems(int pageIndex, int 

itemsPage, int? brandID, int? typeId) 

    { 

        string cacheKey = String.Format(_itemsKeyTemplate, 

pageIndex, itemsPage, brandID, typeId); 

        return await _cache.GetOrCreateAsync(cacheKey, async entry 

=> 

        { 
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            entry.SlidingExpiration = _defaultCacheDuration; 

            return await 

_catalogService.GetCatalogItems(pageIndex, itemsPage, brandID, 

typeId); 

        }); 

    } 

 

    public async Task<IEnumerable<SelectListItem>> GetTypes() 

    { 

        return await _cache.GetOrCreateAsync(_typesKey, async 

entry => 

        { 

            entry.SlidingExpiration = _defaultCacheDuration; 

            return await _catalogService.GetTypes(); 

        }); 

    } 

} 

To configure the application to use the cached version of the service, but still allow the service to get 

the instance of CatalogService it needs in its constructor, you would add the following in 

ConfigureServices: 

services.AddMemoryCache(); 

services.AddScoped<ICatalogService, CachedCatalogService>(); 

services.AddScoped<CatalogService>(); 

With this in place, the database calls to fetch the catalog data will only be made once per minute, 

rather than on every request. Depending on the traffic to the site, this can have a very significant 

impact on the number of queries made to the database, and the average page load time for the home 

page that currently depends on all three of the queries exposed by this service. 
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An issue that arises when caching is implemented is stale data – that is, data that has changed at the 

source but an out of date version remains in the cache. A simple way to mitigate this issue is to use 

small cache durations, since for a busy application there is limited additional benefit to extending the 

length data is cached. For example, consider a page that makes a single database query, and is 

requested 10 times per second. If this page is cached for one minute, it will result in the number of 

database queries made per minute to drop from 600 to 1, a reduction of 99.8%. If instead the cache 

duration were made one hour, the overall reduction would be 99.997%, but now the likelihood and 

potential age of stale data are both increased dramatically. 

Another approach is to proactively remove cache entries when the data they contain is updated. Any 

individual entry can be removed if its key is known: 

_cache.Remove(cacheKey); 

If your application exposes functionality for updating entries that it caches, you can remove the 

corresponding cache entries in your code that performs the updates. Sometimes there may be many 

different entries that depend on a particular set of data. In that case, it can be useful to create 

dependencies between cache entries, by using a CancellationChangeToken. With a 

CancellationChangeToken, you can expire multiple cache entries at once by cancelling the 

token. 

// configure CancellationToken and add entry to cache 

var cts = new CancellationTokenSource(); 

_cache.Set(“cts”, cts); 

_cache.Set(cacheKey, 

            itemToCache, 

            new CancellationChangeToken(cts.Token)); 

 

// elsewhere, expire the cache by cancelling the token 

_cache.Get<CancellationTokenSource>(“cts”).Cancel(); 
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9 

 Testing ASP.NET 
Core MVC Apps 

“If you don’t like unit testing your product, most likely your customers won’t like to 

test it, either.” 

Anonymous 

Summary 

Software of any complexity can fail in unexpected ways in response to changes. Thus, testing after 

making changes is required for all but the most trivial (or least critical) applications. Manual testing is 

the slowest, least reliable, most expensive way to test software. Unfortunately, if applications are not 

designed to be testable, it can be the only means available. Applications written following the 

architectural principles laid out in chapter X should be unit testable, and ASP.NET Core applications 

support automated integration and functional testing as well. 

Kinds of Automated Tests 

There are many kinds of automated tests for software applications. The simplest, lowest level test is 

the unit test. At a slightly higher level there are integration tests and functional tests. Other kinds of 

tests, like UI tests, load tests, stress tests, and smoke tests, are beyond the scope of this document. 

Unit Tests 

A unit test tests a single part of your application’s logic. One can further describe it by listing some of 

the things that it isn’t. A unit test doesn’t test how your code works with dependencies or 

infrastructure – that’s what integration tests are for. A unit test doesn’t test the framework your code 

is written on – you should assume it works or, if you find it doesn’t, file a bug and code a workaround. 

A unit test runs completely in memory and in process. It doesn’t communicate with the file system, the 

network, or a database. Unit tests should only test your code. 

Unit tests, by virtue of the fact that they test only a single unit of your code, with no external 

dependencies, should execute extremely quickly. Thus, you should be able to run test suites of 

hundreds of unit tests in a few seconds. Run them frequently, ideally before every push to a shared 

source control repository, and certainly with every automated build on your build server. 
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Integration Tests 

Although it’s a good idea to encapsulate your code that interacts with infrastructure like databases 

and file systems, you will still have some of that code, and you will probably want to test it. 

Additionally, you should verify that your code’s layers interact as you expect when your application’s 

dependencies are fully resolved. This is the responsibility of integration tests. Integration tests tend to 

be slower and more difficult to set up than unit tests, because they often depend on external 

dependencies and infrastructure. Thus, you should avoid testing things that could be tests with unit 

tests in integration tests. If you can test a given scenario with a unit test, you should test it with a unit 

test. If you can’t, then consider using an integration test. 

Integration tests will often have more complex setup and teardown procedures than unit tests. For 

example, an integration test that goes against an actual database will need a way to return the 

database to a known state before each test run. As new tests are added and the production database 

schema evolves, these test scripts will tend to grow in size and complexity. In many large systems, it is 

impractical to run full suites of integration tests on developer workstations before checking in 

changes to shared source control. In these cases, integration tests may be run on a build server. 

The LocalFileImageService implementation class implements the logic for fetching and 

returning the bytes of an image file from a particular folder given an id: 

public class LocalFileImageService : IImageService 

{ 

    private readonly IHostingEnvironment _env; 

 

    public LocalFileImageService(IHostingEnvironment env) 

    { 

        _env = env; 

    } 

    public byte[] GetImageBytesById(int id) 

    { 

        try 

        { 

            var contentRoot = _env.ContentRootPath + "//Pics"; 

            var path = Path.Combine(contentRoot, id + ".png"); 
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            return File.ReadAllBytes(path); 

Functional Tests 

Integration tests are written from the perspective of the developer, to verify that some components of 

the system work correctly together. Functional tests are written from the perspective of the user, and 

verify the correctness of the system based on its requirements. The following excerpt offers a useful 

analogy for how to think about functional tests, compared to unit tests: 

“Many times the development of a system is likened to the building of a house. While 

this analogy isn't quite correct, we can extend it for the purposes of understanding the 

difference between unit and functional tests. Unit testing is analogous to a building 

inspector visiting a house's construction site. He is focused on the various internal 

systems of the house, the foundation, framing, electrical, plumbing, and so on. He 

ensures (tests) that the parts of the house will work correctly and safely, that is, meet 

the building code. Functional tests in this scenario are analogous to the homeowner 

visiting this same construction site. He assumes that the internal systems will behave 

appropriately, that the building inspector is performing his task. The homeowner is 

focused on what it will be like to live in this house. He is concerned with how the house 

looks, are the various rooms a comfortable size, does the house fit the family's needs, 

are the windows in a good spot to catch the morning sun. The homeowner is 

performing functional tests on the house. He has the user's perspective. The building 

inspector is performing unit tests on the house. He has the builder's perspective.” 

Source: Unit Testing versus Functional Tests 

I’m fond of saying “As developers, we fail in two ways: we build the thing wrong, or we build the 

wrong thing.” Unit tests ensure you are building the thing right; functional tests ensure you are 

building the right thing. 

Since functional tests operate at the system level, they may require some degree of UI automation. 

Like integration tests, they usually work with some kind of test infrastructure as well. This makes them 

slower and more brittle than unit and integration tests. You should have only as many functional tests 

as you need to be confident the system is behaving as users expect. 

 

Testing Pyramid 

Martin Fowler wrote about the testing pyramid, an example of which is shown in Figure 9-X. 

http://www.softwaretestingtricks.com/2007/01/unit-testing-versus-functional-tests.html
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Figure 9-X Testing Pyramid 

The different layers of the pyramid, and their relative sizes, represent different kinds of tests and how 

many you should write for your application. As you can see, the recommendation is to have a large 

base of unit tests, supported by a smaller layer of integration tests, with an even smaller layer of 

functional tests. Each layer should ideally only have tests in it that cannot be performed adequately at 

a lower layer. Keep the testing pyramid in mind when you are trying to decide which kind of test you 

need for a particular scenario. 

What to Test 

A common problem for developers who are inexperienced with writing automated tests is coming up 

with what to test. A good starting point is to test conditional logic. Anywhere you have a method with 

behavior that changes based on a conditional statement (if-else, switch, etc.), you should be able to 

come up at least a couple of tests that confirm the correct behavior for certain conditions. If your code 

has error conditions, it’s good to write at least one test for the “happy path” through the code (with 

no errors), and at least one test for the “sad path” (with errors or atypical results) to confirm your 

application behaves as expected in the face of errors. Finally, try to focus on testing things that can 

fail, rather than focusing on metrics like code coverage. More code coverage is better than less, 

generally. However, writing a few more tests of a very complex and business-critical method is usually 

a better use of time than writing tests for auto-properties just to improve test code coverage metrics. 

Organizing Test Projects 

Test projects can be organized however works best for you. It’s a good idea to separate tests by type 

(unit test, integration test) and by what they are testing (by project, by namespace). Whether this 

separation consists of folders within a single test project, or multiple test projects, is a design decision. 
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One project is simplest, but for large projects with many tests, or in order to more easily run different 

sets of tests, you might want to have several different test projects. Many teams organize test projects 

based on the project they are testing, which for applications with more than a few projects can result 

in a large number of test projects, especially if you still break these down according to what kind of 

tests are in each project. A compromise approach is to have one project per kind of test, per 

application, with folders inside the test projects to indicate the project (and class) being tested. 

A common approach is to organize the application projects under a ‘src’ folder, and the application’s 

test projects under a parallel ‘tests’ folder. You can create matching solution folders in Visual Studio, if 

you find this organization useful. 

 

Figure 9-X Test organization in your solution 

You can use whichever test framework you prefer. The xUnit framework works well and is what all of 

the ASP.NET Core and EF Core tests are written in. You can add an xUnit test project in Visual Studio 

using the template shown in Figure 9-X, or from the CLI using dotnet new xunit. 
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Figure 9-X Add an xUnit Test Project in Visual Studio 

Test Naming 

You should name your tests in a consistent fashion, with names that indicate what each test does. One 

approach I’ve had great success with is to name test classes according to the class and method they 

are testing. This results in many small test classes, but it makes it extremely clear what each test is 

responsible for. With the test class name set up to identify the class and method to be tested, the test 

method name can be used to specify the behavior being tested. This should include the expected 

behavior and any inputs or assumptions that should yield this behavior. Some example test names: 

 CatalogControllerGetImage.CallsImageServiceWithId 

 CatalogControllerGetImage.LogsWarningGivenImageMissingException 

 CatalogControllerGetImage.ReturnsFileResultWithBytesGivenSuccess 

 CatalogControllerGetImage.ReturnsNotFoundResultGivenImageMissingException 

A variation of this approach ends each test class name with “Should” and modifies the tense slightly: 

 CatalogControllerGetImageShould.CallImageServiceWithId 

 CatalogControllerGetImageShould.LogWarningGivenImageMissingException 

Some teams find the second naming approach clearer, though slightly more verbose. In any case, try 

to use a naming convention that provides insight into test behavior, so that when one or more tests 

fail, it’s obvious from their names what cases have failed. Avoid naming you tests vaguely, such as 

ControllerTests.Test1, as these offer no value when you see them in test results. 
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If you follow a naming convention like the one above that produces many small test classes, it’s a 

good idea to further organize your tests using folders and namespaces. Figure 9-X shows one 

approach to organizing tests by folder within several test projects. 

 

Figure 9-X. Organizing test classes by folder based on class being tested. 

Of course, if a particular application class has many methods being tested (and thus many test 

classes), it may make sense to place these in a folder corresponding to the application class. This 

organization is no different than how you might organize files into folders elsewhere. If you have 

more than three or four related files in a folder containing many other files, it’s often helpful to move 

them into their own subfolder. 

Unit Testing ASP.NET Core Apps 

In a well-designed ASP.NET Core application, most of the complexity and business logic will be 

encapsulated in business entities and a variety of services. The ASP.NET Core MVC app itself, with its 

controllers, filters, viewmodels, and views, should require very few unit tests. Much of the functionality 

of a given action lies outside the action method itself. Testing whether routing works correctly, or 

global error handling, cannot be done effectively with a unit test. Likewise, any filters, including model 

validation and authentication and authorization filters, cannot be unit tested. Without these sources of 

behavior, most action methods should be trivially small, delegating the bulk of their work to services 

that can be tested independent of the controller that uses them. 

Sometimes you’ll need to refactor your code in order to unit test it. Frequently this involves identifying 

abstractions and using dependency injection to access the abstraction in the code you’d like to test, 
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rather than coding directly against infrastructure. For example, consider this simple action method for 

displaying images: 

[HttpGet("[controller]/pic/{id}")] 

public IActionResult GetImage(int id) 

{ 

    var contentRoot = _env.ContentRootPath + "//Pics"; 

    var path = Path.Combine(contentRoot, id + ".png"); 

    Byte[] b = System.IO.File.ReadAllBytes(path); 

    return File(b, "image/png"); 

} 

Unit testing this method is made difficult by its direct dependency on System.IO.File, which it 

uses to read from the file system. You can test this behavior to ensure it works as expected, but doing 

so with real files is an integration test. It’s worth noting you can’t test this method’s route – you’ll see 

how to do this with a functional test shortly. 

If you can’t unit test the file system behavior directly, and you can’t test the route, what is there to 

test? Well, after refactoring to make unit testing possible, you may discover some test cases and 

missing behavior, such as error handling. What does the method do when a file isn’t found? What 

should it do? In this example, the refactored method looks like this: 

[HttpGet("[controller]/pic/{id}")] 

public IActionResult GetImage(int id) 

{ 

    byte[] imageBytes; 

    try 

    { 

        imageBytes = _imageService.GetImageBytesById(id); 

    } 

    catch (CatalogImageMissingException ex) 
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    { 

        _logger.LogWarning($"No image found for id: {id}"); 

        return NotFound(); 

    } 

    return File(imageBytes, "image/png"); 

} 

The _logger and _imageService are both injected as dependencies. Now you can test that the 

same id that is passed to the action method is passed to the _imageService, and that the resulting 

bytes are returned as part of the FileResult. You can also test that error logging is happening as 

expected, and that a NotFound result is returned if the image is missing, assuming this is important 

application behavior (that is, not just temporary code the developer added to diagnose an issue). The 

actual file logic has moved into a separate implementation service, and has been augmented to return 

an application-specific exception for the case of a missing file. You can test this implementation 

independently, using an integration test. 

Integration Testing ASP.NET Core Apps 

        } 

        catch (FileNotFoundException ex) 

        { 

            throw new CatalogImageMissingException(ex); 

        } 

    } 

} 

This service uses the IHostingEnvironment, just as the CatalogController code did before 

it was refactored into a separate service. Since this was the only code in the controller that used 

IHostingEnvironment, that dependency was removed from CatalogController’s 

constructor. 

To test that this service works correctly, you need to create a known test image file and verify that the 

service returns it given a specific input. You should take care not to use mock objects on the behavior 

you actually want to test (in this case, reading from the file system). However, mock objects may still 

be useful to set up integration tests. In this case, you can mock IHostingEnvironment so that its 
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ContentRootPath points to the folder you’re going to use for your test image. The complete 

working integration test class is shown here: 

public class LocalFileImageServiceGetImageBytesById 

{ 

    private byte[] _testBytes = new byte[] { 0x01, 0x02, 0x03 }; 

    private readonly Mock<IHostingEnvironment> _mockEnvironment = 

new Mock<IHostingEnvironment>(); 

    private int _testImageId = 123; 

    private string _testFileName = "123.png"; 

 

    public LocalFileImageServiceGetImageBytesById() 

    { 

        // create folder if necessary 

        Directory.CreateDirectory(Path.Combine(GetFileDirectory(), 

"Pics")); 

 

        string filePath = GetFilePath(_testFileName); 

        System.IO.File.WriteAllBytes(filePath, _testBytes); 

        _mockEnvironment.SetupGet<string>(m => 

m.ContentRootPath).Returns(GetFileDirectory()); 

    } 

 

    private string GetFilePath(string fileName) 

    { 

        return Path.Combine(GetFileDirectory(), "Pics", fileName); 
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    } 

 

    private string GetFileDirectory() 

    { 

        var location = 

System.Reflection.Assembly.GetEntryAssembly().Location; 

        return Path.GetDirectoryName(location); 

    } 

 

    [Fact] 

    public void ReturnsFileContentResultGivenValidId() 

    { 

        var fileService = new 

LocalFileImageService(_mockEnvironment.Object); 

 

        var result = fileService.GetImageBytesById(_testImageId); 

 

        Assert.Equal(_testBytes, result); 

    } 

} 

Note that the test itself is very simple – the bulk of the code is necessary to configure the system and 

create the testing infrastructure (in this case, an actual file to be read from disk). This is typical for 

integration tests, which often require more complex setup work than unit tests. 
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Functional Testing ASP.NET Core Apps 

For ASP.NET Core applications, the TestServer class makes functional tests fairly easy to write. You 

configure a TestServer using a WebHostBuilder, just as you normally do for your application. 

This WebHostBuilder should be configured just like your application’s real host, but you can 

modify any aspects of it that make testing easier. Most of the time, you’ll reuse the same 

TestServer for many test cases, so you can encapsulate it in a reusable method (perhaps in a base 

class): 

public abstract class BaseWebTest 

{ 

    protected readonly HttpClient _client; 

    protected string _contentRoot; 

 

    public BaseWebTest() 

    { 

        _client = GetClient(); 

    } 

 

    protected HttpClient GetClient() 

    { 

        var startupAssembly = 

typeof(Startup).GetTypeInfo().Assembly; 

        _contentRoot = GetProjectPath("src", startupAssembly); 

        var builder = new WebHostBuilder() 

            .UseContentRoot(_contentRoot) 

            .UseStartup<Startup>(); 
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        var server = new TestServer(builder); 

        var client = server.CreateClient(); 

 

        return client; 

    }  

} 

The GetProjectPath method simply returns the physical path to the web project (download 

sample solution). The WebHostBuilder in this case simply specifies where the content root for the 

web application is, and references the same Startup class the real web application uses. To work with 

the TestServer, you use the standard System.Net.HttpClient type to make requests to it. 

TestServer exposes a helpful CreateClient method that provides a pre-configured client that is ready 

to make requests to the application running on the TestServer. You use this client (set to the 

protected _client member on the base test above) when writing functional tests for your ASP.NET Core 

application: 

 public class CatalogControllerGetImage : BaseWebTest 

{ 

    [Fact] 

    public async Task ReturnsFileContentResultGivenValidId() 

    { 

        var testFilePath = Path.Combine(_contentRoot, 

"pics//1.png"); 

        var expectedFileBytes = File.ReadAllBytes(testFilePath); 

 

        var response = await _client.GetAsync("/catalog/pic/1"); 

        response.EnsureSuccessStatusCode(); 

        var streamResponse = await 

response.Content.ReadAsStreamAsync(); 

        byte[] byteResult; 
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        using (var ms = new MemoryStream()) 

        { 

            streamResponse.CopyTo(ms); 

            byteResult = ms.ToArray(); 

        } 

 

        Assert.Equal(expectedFileBytes, byteResult); 

    } 

} 

This functional test exercises the full ASP.NET Core MVC application stack, including all middleware, 

filters, binders, etc. that may be in place. It verifies that a given route (“/catalog/pic/1”) returns the 

expected byte array for a file in a known location. It does so without setting up a real web server, and 

so avoids much of the brittleness that using a real web server for testing can experience (for example, 

problems with firewall settings). Functional tests that run against TestServer are usually slower 

than integration and unit tests, but are much faster than tests that would run over the network to a 

test web server. 
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 Development 
process for Azure-
hosted ASP.NET 
Core applications 

“With the cloud, individuals and small businesses can snap their fingers and 

instantly set up enterprise-class services.” 

Roy Stephan 

Vision 

Develop well-designed ASP .NET Core applications the way you like, using Visual Studio or the dotnet 

CLI and Visual Studio Code or your editor of choice. 

Development environment for ASP.NET Core apps 

Development tools choices: IDE or editor 

Whether you prefer a full and powerful IDE or a lightweight and agile editor, Microsoft has you 

covered when developing ASP.NET Core applications. 

Visual Studio 2017. If you’re using Visual Studio 2017 you can build ASP.NET Core applications as 

long as you have the .NET Core cross-platform development workload installed. Figure 10-X shows the 

required workload in the Visual Studio 2017 setup dialog. 
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Figure 10-X. Installing the .NET Core workload in Visual Studio 2017. 

 

Download Visual Studio 2017 

Visual Studio Code and dotnet CLI (Cross-Platform Tools for Mac, Linux and Windows). If you prefer 

a lightweight and cross-platform editor supporting any development language, you can use Microsoft 

Visual Studio Code and the dotnet CLI. These products provide a simple yet robust experience that 

streamlines the developer workflow. Additionally, Visual Studio Code supports extensions for C# and 

web development, providing intellisense and shortcut-tasks within the editor.  

Download the .NET Core SDK 

Download Visual Studio Code  

 

Development workflow for Azure-hosted ASP.NET 
Core apps 

The application development lifecycle starts from each developer’s machine, coding the app using 

their preferred language and testing it locally. Developers may choose their preferred source control 

system and can configure Continuous Integration (CI) and/or Continuous Delivery/Deployment (CD) 

using a build server or based on built-in Azure features. 

To get started with developing an ASP.NET Core application using CI/CD, you can use Visual Studio 

Team Services or your organization’s own Team Foundation Server (TFS). 

Initial Setup 

To create a release pipeline for your app, you need to have your application code in source control. 

Set up a local repository and connect it to a remote repository in a team project. Follow these 

instructions: 

https://www.visualstudio.com/downloads/
https://www.microsoft.com/net/download/core
https://code.visualstudio.com/download


 

 

99    Chapter 10 

    Development Process for Azure 

 

 Share your code with Git and Visual Studio or 

 Share your code with TFVC and Visual Studio 

Create an Azure App Service where you’ll deploy your application. Create a Web App by going to the 

App Services blade on the Azure portal. Click +Add, select the Web App template, click Create, and 

provide a name and other details. The web app will be accessible from 

{name}.azurewebsites.net. 

 

Figure 10-X. Creating a new Azure App Service Web App in the Azure Portal. 

Your CI build process will perform an automated build whenever new code is committed to the 

project’s source control repository. This gives you immediate feedback that the code builds (and, 

ideally, passes automated tests) and can potentially be deployed. This CI build will produce a web 

deploy package artifact and publish it for consumption by your CD process. 

Define your CI build process 

Be sure to enable continuous integration so the system will queue a build whenever someone on your 

team commits new code. Test the build and verify that it is producing a web deploy package as one of 

its artifacts. 

When a build succeeds, your CD process will deploy the results of your CI build to your Azure web 

app. To configure this, you create and configure a Release, which will deploy to your Azure App 

Service. 

Define your CD release process 

https://www.visualstudio.com/en-us/docs/git/share-your-code-in-git-vs
https://www.visualstudio.com/en-us/docs/tfvc/share-your-code-in-tfvc-vs
https://www.visualstudio.com/en-us/docs/build/apps/aspnet/aspnetcore-to-azure#ci
https://www.visualstudio.com/en-us/docs/build/apps/aspnet/aspnetcore-to-azure#cd
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Once your CI/CD pipeline is configured, you can simply make updates to your web app and commit 

them to source control to have them deployed. 

Workflow for developing Azure-hosted ASP.NET Core applications 

Once you have configured your Azure account and your CI/CD process, developing Azure-hosted 

ASP.NET Core applications is simple. The following are the basic steps you usually take when building 

an ASP.NET Core app, hosted in Azure App Service as a Web App, as illustrated in Figure 10-X.  

 

Figure 10-X. Step-by-step workflow for building ASP.NET Core apps and hosting them in Azure 
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Step 1. Local Dev Environment Inner Loop 

Developing your ASP.NET Core application for deployment to Azure is no different from developing 

your application otherwise. Use the local development environment you’re comfortable with, whether 

that’s Visual Studio 2017 or the dotnet CLI and Visual Studio Code or your preferred editor. You can 

write code, run and debug your changes, run automated tests, and make local commits to source 

control until you’re ready to push your changes to your shared source control repository. 

Step 2. Application Code Repository 

Whenever you’re ready to share your code with your team, you should push your changes from your 

local source repository to your team’s shared source repository. If you’ve been working in a custom 

branch, this step usually involves merging your code into a shared branch (perhaps by means of a pull 

request). 

Step 3. Build Server: Continuous Integration. Build, Test, Package 

A new build is triggered on the build server whenever a new commit is made to the shared 

application code repository. As part of the CI process, this build should fully compile the application 

and run automated tests to confirm everything is working as expected. The end result of the CI 

process should be a packaged version of the web app, ready for deployment. 

Step 4. Build Server: Continuous Delivery 

Once a build as succeeded, the CD process will pick up the build artifacts produced. This will include a 

web deploy package. The build server will deploy this package to Azure App Service, replacing any 

existing service with the newly created one. Typically this step targets a staging environment, but 

some applications deploy directly to production through a CD process. 

Step 5. Azure App Service. Web App. 

Once deployed, the ASP.NET Core application runs within the context of an Azure App Service Web 

App. This Web App can be monitored and further configured using the Azure Portal. 

Step 6. Production Monitoring and Diagnostics 

While the Web App is running, you can monitor the health of the application and collect diagnostics 

and user behavior data. Application Insights is included in Visual Studio, and offers automatic 

instrumentation for ASP.NET apps. It can provide you with information on usage, exceptions, requests, 

performance, and logs. 

 

References 

Build and Deploy Your ASP.NET Core App to Azure 
https://www.visualstudio.com/en-us/docs/build/apps/aspnet/aspnetcore-to-azure 

 

https://www.visualstudio.com/en-us/docs/git/pull-requests
https://www.visualstudio.com/en-us/docs/git/pull-requests
https://www.visualstudio.com/en-us/docs/build/apps/aspnet/aspnetcore-to-azure
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 Azure Hosting 
Recommendations 
for ASP.NET Core 
Web Apps 

“Line-of-business leaders everywhere are bypassing IT departments to get 

applications from the cloud (aka SaaS) and paying for them like they would a 

magazine subscription. And when the service is no longer required, they can cancel 

the subscription with no equipment left unused in the corner.” 

Daryl Plummer, Gartner analyst 

 

Summary 

Whatever your application’s needs and architecture, Windows Azure can support it. Your hosting 

needs can be as simple as a static web site to an extremely sophisticated application made up of 

dozens of services. For ASP.NET Core monolithic web applications and supporting services, there are 

several well-known configurations that are recommended. The recommendations below are grouped 

according to the kind of resource to be hosted, whether full applications, individual processes, or data. 

 

Web Applications 

Web applications can be hosted with: 

 App Service Web Apps 
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 Containers 

 Azure Service Fabric 

 Virtual Machines (VMs) 

Of these, App Service Web Apps are the recommended approach for most scenarios. For microservice 

architectures, consider a container-based approach, or service fabric. If you need more control over 

the machines running your application, consider Azure Virtual Machines. 

App Service Web Apps 

App Service Web Apps offers a fully managed platform optimized for hosting web applications. It is a 

platform-as-a-service(PaaS) offering that lets you focus on your business logic, while Azure takes care 

of the infrastructure needed to run and scale the app. Some key features of App Service Web Apps: 

 DevOps optimization (continuous integration and delivery, multiple environments, A/B 

testing, scripting support) 

 Global scale and high availability 

 Connections to SaaS platforms and your on-premises data 

 Security and compliance 

 Visual Studio integration 

Azure App Service is the best choice for most web apps. Deployment and management are integrated 

into the platform, sites can scale quickly to handle high traffic loads, and the built-in load balancing 

and traffic manager provide high availability. You can move existing sites to Azure App Service easily 

with an online migration tool, use an open-source app from the Web Application Gallery, or create a 

new site using the framework and tools of your choice. The WebJobs feature makes it easy to add 

background job processing to your App Service web app. 

Containers and Azure Container Service 

Azure Container Service makes it simpler for you to create, configure, and manage a cluster of virtual 

machines that are preconfigured to run containerized applications. It uses an optimized configuration 

of popular open-source scheduling and orchestration tools. This enables you to use your existing 

skills, or draw upon a large and growing body of community expertise, to deploy and manage 

container-based applications on Microsoft Azure. 

One goal of Azure Container Service is to provide a container hosting environment using open-source 

tools and technologies that are popular among Microsoft’s customers today. To this end, Azure 

Container Service exposes the standard API endpoints for your chosen orchestrator (DC/OS, Docker 

Swarm, or Kubernetes). By using these endpoints, you can leverage any software that is capable of 

talking to those endpoints. For example, in the case of the Docker Swarm endpoint, you might choose 

to use the Docker command-line interface (CLI). For DC/OS, you might choose the DCOS CLI. For 

Kubernetes, you might choose kubectl. Figure 11-X shows how you would use these endpoints to 

manage your container clusters. 
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Figure 11-X. Azure Container Service management with Docker, Kubernetes, or DC/OS endpoints. 

Azure Service Fabric 

Service Fabric is a good choice if you’re creating a new app or re-writing an existing app to use a 

microservice architecture. Apps, which run on a shared pool of machines, can start small and grow to 

massive scale with hundreds or thousands of machines as needed. Stateful services make it easy to 

consistently and reliably store app state, and Service Fabric automatically manages service 

partitioning, scaling, and availability for you. Service Fabric also supports WebAPI with Open Web 

Interface for .NET (OWIN) and ASP.NET Core. Compared to App Service, Service Fabric also provides 

more control over, or direct access to, the underlying infrastructure. You can remote into your servers 

or configure server startup tasks. 

Azure Virtual Machines 

If you have an existing application that would require substantial modifications to run in App Service 

or Service Fabric, you could choose Virtual Machines in order to simplify migrating to the cloud. 

However, correctly configuring, securing, and maintaining VMs requires much more time and IT 

expertise compared to Azure App Service and Service Fabric. If you are considering Azure Virtual 

Machines, make sure you take into account the ongoing maintenance effort required to patch, 

update, and manage your VM environment. Azure Virtual Machines is Infrastructure-as-a-Service 

(IaaS), while App Service and Service Fabric are Platform-as-a-Service (Paas). 
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Feature Comparison 

Feature App 

Service 

Service 

Fabric 

Virtual 

Machine 

Near-Instant Deployment X X  

Scale up to larger machines without redeploy X X  

Instances share content and configuration; no need to redeploy 

or reconfigure when scaling 

X X  

Multiple deployment environments (production, staging) X X  

Automatic OS update management X   

Seamless switching between 32/64 bit platforms X   

Deploy code with Git, FTP X  X 

Deploy code with WebDeploy X  X 

Deploy code with TFS X X X 

Host web or web service tier of multi-tier architecture X X X 

Access Azure services like Service Bus, Storage, SQL Database X X X 

Install any custom MSI  X X 

 

Logical Processes 

Individual logical processes that can be decoupled from the rest of the application may be deployed 

independently to Azure Functions in a “serverless” manner. Azure Functions lets you just write the 

code you need for a given problem, without worrying about the application or infrastructure to run it. 

You can choose from a variety of programming languages, including C#, F#, Node.js, Python, and 

PHP, allowing you to pick the most productive language for the task at hand. Like most cloud-based 

solutions, you pay only for the amount of time your use, and you can trust Azure Functions to scale up 

as needed. 

Data 

Azure offers a wide variety of data storage options, so that your application can use the appropriate 

data provider for the data in question. 

For transactional, relational data, Azure SQL Databases are the best option. For high performance 

read-mostly data, a Redis cache backed by an Azure SQL Database is a good solution.  
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Unstructured JSON data can be stored in a variety of ways, from SQL Database columns to Blobs or 

Tables in Azure Storage, to DocumentDB. Of these, DocumentDB offers the best querying 

functionality, and is the recommended option for large numbers of JSON-based documents that must 

support querying. 

Transient command- or event-based data used to orchestrate application behavior can use Azure 

Service Bus or Azure Storage Queues. Azure Storage Bus offers more flexibility and is the 

recommended service for non-trivial messaging within and between applications. 

Architecture Recommendations 

Your application’s requirements should dictate its architecture. There are many different Azure 

services available, choosing the right one is an important decision. Microsoft offers a gallery of 

reference architectures to help identify typical architectures optimized for common scenarios. You 

may bind a reference architecture that maps closely to your application’s requirements, or at least 

offers a starting point. 

Figure 11-X shows an example reference architecture. This diagram describes a recommended 

architecture approach for a Sitecore content management system website optimized for marketing. 

 

Figure 11-X. Sitecore marketing website reference architecture. 

 

References – Azure Hosting Recommendations 

 Azure Solution Architectures 
https://azure.microsoft.com/en-us/solutions/architecture/  

 Azure Developer Guide 

https://azure.microsoft.com/en-us/campaigns/developer-guide/  

 What is Azure App Service? 
https://docs.microsoft.com/en-us/azure/app-service/app-service-value-prop-what-is  

https://azure.microsoft.com/en-us/solutions/architecture/
https://azure.microsoft.com/en-us/campaigns/developer-guide/
https://docs.microsoft.com/en-us/azure/app-service/app-service-value-prop-what-is
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 Azure App Service, Virtual Machines, Service Fabric and Cloud Services Comparison 
https://docs.microsoft.com/en-us/azure/app-service-web/choose-web-site-cloud-service-vm  

 

https://docs.microsoft.com/en-us/azure/app-service-web/choose-web-site-cloud-service-vm

